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Unit I: Complex Analysis (Lectures 10)

1. Function of complex variables

2. Analytic and Cauchy-Riemann conditions

3. Example of analytic functions

4. Singular functions: Poles and branch points

5. Order of singularity
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Q. Plot the number 𝑒(1+𝑖
𝜋

6
). (2017, mark: 1)

Here, r = 𝑒1= 2.718 and argument, θ =
𝜋

6

Real axis

Imag. axis

θ =
𝜋

6

Q. Plot the number 𝑒(1−𝑖
𝜋

6
). (2015, mark: 1)

= 𝑒1× 𝑒(𝑖
𝜋

6
)

= 𝑒1× (𝑐𝑜𝑠
𝜋

6
+ 𝑖𝑠𝑖𝑛

𝜋

6
)

= 𝑒(1+𝑖
𝜋

6
)

= 𝑒1× 𝑒(−𝑖
𝜋

6
)

= 𝑒1× (𝑐𝑜𝑠
𝜋

6
− 𝑖𝑠𝑖𝑛

𝜋

6
)

= 𝑒(1−𝑖
𝜋

6
)

Here, r = 𝑒1= 2.718 and argument, θ = −
𝜋

6

Real axis

Imag. axis

θ = −
𝜋

6

Some important problem
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Q. What does the equation 𝑧 − 𝑖 = 2
represent? (2015, mark: 1)

Ans.: Here Z is any complex number. 

Real axis

Imag. axis

𝑧 − (𝑖) = 2

Complex number

𝑖

−𝑖

𝑧

So, the given eq. represent a circle of 

radius 2 at center 𝒊.

Q. Find an equation for (a) a circle of radius 4 with center at 

(-2, 1) or (−2 + 𝑖). (Page no. 15, Book: Schaum’s outline)

Ans.:The center can be represented by the complex no.

(-2 + 𝑖 ). If Z is any point on the circle, the

distance from Z to 2 + 𝑖 is

𝑧 − (−2 + 𝑖) = 4

This is the required equation.

Real axis

Imag. axis

𝑖

−2

𝑧

(−𝟐 + 𝒊)
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Function of complex variables

 A symbol, such as 𝑍, which can stand for any one of a set of complex numbers is called a complex variable.

𝑍 = 𝑥 + 𝑖𝑦

Q. What do you mean by a function?

Ans.: A function is a procedure which gives a unique output for any suitable input.

The set of suitable input is called as domain of the function while the set of outputs which are possible is called 

the range of the function.

Real function: Let, 𝑦 is a function of 𝑥 and this is written as
𝑥 𝑦=𝒙𝟐

Domain Range

Independent 

variable

Dependent 

variable

3 9

2 4

0 0

-2 4

3 9

Y

X

Mapping

For example, 𝑦 = 𝑥2

𝑦 = 𝑓(𝑥)
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𝑍 = 𝑥 + 𝑖𝑦
Or 

𝑍 = (𝑥, 𝑦)
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒

𝑊 = 𝑓 𝑍
= 𝑢 + 𝑖𝑣

Or
𝑊 = (𝑢, 𝑣)

 Now, for example, let us consider a complex variable

𝑊 = 𝑓 𝑍 = 𝑍2

= (𝑥 + 𝑖𝑦)2

= (𝑥2−𝑦2) + 𝑖(2𝑥𝑦)

=> 𝑢 + 𝑖𝑣

=> 𝑢 + 𝑖𝑣

𝑢 = 𝑥2 − 𝑦2

v = 2𝑥𝑦

Therefore, we get

𝑃(1,2)

𝑄

𝑦

𝑥

𝑃/(−3,4) 𝑄/

𝑀𝑎𝑝𝑝𝑖𝑛𝑔

𝑍 − 𝑝𝑙𝑎𝑛𝑒 W − 𝑝𝑙𝑎𝑛𝑒

𝑢

𝑣

So, 𝑢 𝑎𝑛𝑑 𝑣 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥, 𝑦
𝑖. 𝑒. 𝑢 𝑥, 𝑦 𝑎𝑛𝑑 𝑣 (𝑥, 𝑦)
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𝑍 = (−1 + 𝑖)

Q. Write the polar form of the given complex number.

𝑧 = 𝑟 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃
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Q. Find the roots and locate them graphically. (pg. no. 23)

Roots of complex no. (not include in syllabus)

𝑦 = 𝑥

Suppose 𝑥=4, Now 

𝑦 = 4

∴ So roots of 4 is ±2

The root of a number x is another number, which when 

multiplied by itself a given number of times, equals x.(−1 + 𝑖)1/3

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: We can write

𝑊 = 𝑧1/3

Where, Z is a complex no. i.e. , 𝐙 = −𝟏 + 𝐢 and 𝐖 is a function of 𝐙.  

Since, the polar form of, 𝑍 = − 1 + 𝑖

𝑍 = − 1 + 𝑖 = 2 𝑐𝑜𝑠  3𝜋 4 + 2𝑘𝜋 + 𝑖 𝑠𝑖𝑛(  3𝜋 4 + 2𝑘𝜋)

𝑍1/3 = (−1 + 𝑖)1/3= 21/6 𝑐𝑜𝑠
 3𝜋 4 + 2𝑘𝜋

3
+ 𝑖 𝑠𝑖𝑛(

 3𝜋 4 + 2𝑘𝜋

3
)

𝐼𝑓 𝑘 = 0, 𝒁𝟏 = 𝟐𝟏/𝟔(𝒄𝒐𝒔  𝝅 𝟒 + 𝒊 𝒔𝒊𝒏  𝝅 𝟒)

𝐼𝑓 𝑘 = 1, 𝒁𝟐 = 𝟐𝟏/𝟔(𝒄𝒐𝒔  𝟏𝟏𝝅 𝟏𝟐 + 𝒊 𝒔𝒊𝒏  𝟏𝟏𝝅 𝟏𝟐)

𝐼𝑓 𝑘 = 2, 𝒁𝟑 = 𝟐𝟏/𝟔(𝒄𝒐𝒔  𝟏𝟗𝝅 𝟏𝟐 + 𝒊 𝒔𝒊𝒏  𝟏𝟗𝝅 𝟏𝟐)

So these are the required roots. DJG 8



𝑾 = 𝒁𝟏/𝟑 = (−1 + 𝑖)1/3= 21/6 𝑐𝑜𝑠
 3𝜋 4 + 2𝑘𝜋

3
+ 𝑖 𝑠𝑖𝑛(

 3𝜋 4 + 2𝑘𝜋

3
)

𝐼𝑓 𝑘 = 0, 𝒁𝟏 = 𝟐𝟏/𝟔(𝒄𝒐𝒔  𝝅 𝟒 + 𝒊 𝒔𝒊𝒏  𝝅 𝟒)

𝐼𝑓 𝑘 = 1, 𝒁𝟐 = 𝟐𝟏/𝟔(𝒄𝒐𝒔  𝟏𝟏𝝅 𝟏𝟐 + 𝒊 𝒔𝒊𝒏  𝟏𝟏𝝅 𝟏𝟐)

𝐼𝑓 𝑘 = 2, 𝒁𝟑 = 𝟐𝟏/𝟔(𝒄𝒐𝒔  𝟏𝟗𝝅 𝟏𝟐 + 𝒊 𝒔𝒊𝒏  𝟏𝟗𝝅 𝟏𝟐)

Y

X

𝒛

𝒛

𝒛 = −𝟏 + 𝒊

 𝝅 𝟒

𝒁𝟏

𝒁𝟐

𝒁𝟑

Y

X

 𝟑𝝅 𝟒

 
𝟏
𝟏
𝝅

𝟒

𝒛𝟐 = 𝒘𝟐

𝒛𝟑 = 𝒘𝟑

𝒛𝟏 = 𝒘𝟏

Roots of complex no. 
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Y

X

𝒛

𝒛

𝒛 = −𝟏 + 𝒊

 𝝅 𝟒

𝒁𝟏

𝒁𝟐

𝒁𝟑

Y

X

 𝟑𝝅 𝟒

 
𝟏
𝟏
𝝅

𝟒

𝒛𝟐 = 𝒘𝟐

𝒛𝟑 = 𝒘𝟑

𝒛𝟏 = 𝒘𝟏

Roots of complex no. 
• Roots of complex number (pg. no 23)

• Riemann surface (pg. no 46)

• Function of complex variable

• Branch line (pg. no. 45)

• Branch point (pg. no 45)

𝑀𝑎𝑝𝑝𝑖𝑛𝑔

𝑤 = 𝑧  1 3

𝑩𝒓𝒂𝒏𝒄𝒉 𝒍𝒊𝒏𝒆
𝒐𝒓

𝒃𝒓𝒂𝒏𝒄𝒉 𝒄𝒖𝒕

𝒁 − 𝒑𝒍𝒂𝒏𝒆 𝐖− 𝒑𝒍𝒂𝒏𝒆

 Each sheet corresponds to a branch of the function and on each sheet the function is single-

valued.

 The concept of Riemann surfaces has the advantage that the various values of multiple-

valued functions are obtained in a continuous fashion. 

 For example, for the function 𝑧  1 3 the Riemann surface has 3 sheets; for ln z, the Riemann 

surface has infinitely many sheets.
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Neighbourhood (page 7)

𝑥0 = 10

Neighborhoods: A delta, or 𝛿, neighborhood of a point 𝑧0 is the set of all points 𝑧 such that 𝑧 − 𝑧0 < 𝛿, where 𝛿
is any given positive number.

A deleted 𝛿 neighborhood of 𝑧0 is a neighborhood of 𝑧0 in which the point 𝑧0 is omitted, i.e., 0 <
𝑧 − 𝑧0 < 𝛿 .

Real number line

Suppose 𝛿 = 1 , neighborhood of a

point 𝑥0 is the set of all points 𝑥 such

that 𝑥 − 𝑥0 < 𝛿 (i. e. 𝑥 − 10 ) < 1.
Then neighbourhood are: …9.8, 9.9,

10.1, 10.2…etc.

𝑧0

Suppose 𝛿 = 1, neighborhood of a point 𝑧0 is

the set of all points 𝑧 such that

𝑧 − 𝑧0 < 𝛿 (i. e. 𝑧 − 𝑧0 ) < 1.

𝑧

𝑅𝑒

𝐼𝑚

Z-plane

𝑧0

𝑧

𝑅𝑒

𝐼𝑚

Z-plane

Deleted neighborhood, when we

omitted the point 𝑧0 i.e.

0 < 𝑧 − 𝑧0 < 𝛿.

𝐷𝑖𝑠𝑘 𝑃𝑢𝑛𝑐𝑡𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑘
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Region

Identify the region 𝑧 < 2

𝑅𝑒

𝐼𝑚

Z-plane

Identify the region 𝑧 − 𝑧0 < 1

𝑅𝑒

𝐼𝑚

Z-plane

𝑧0

Identify the region 1 < 𝑧 < 2

𝑅𝑒

𝐼𝑚

Z-plane
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Limit (page 46)

Limit: Let 𝑓 (𝑧) be defined and single-valued in a neighborhood of 𝑧 = 𝑧0 with the possible exception of 𝑧 − 𝑧0 itself

(i.e., in a deleted 𝛿 neighborhood of 𝑧0). We say that the number 𝑙 is the limit of 𝑓 (𝑧) as 𝑧 approaches 𝑧0 and write

𝒍𝒊𝒎𝒛→𝒛𝟎𝒇 𝒛 = 𝒍 if for any positive number 𝜖 (however small), we can find some positive number 𝛿 (usually

depending on 𝜖 ) such that 𝑓 𝑧 − 𝑙 < 𝜖 whenever 0 < 𝑧 − 𝑧0 < 𝛿.

𝒙

𝒇(𝒙)

Real function

𝑥 → ← 𝑥

𝑧0

𝑧

𝑅𝑒

𝐼𝑚

Z-plane

𝑅𝑒

𝐼𝑚

W-plane

𝑓(𝑧)

𝑓 𝑧 = 𝑙

Here 𝑓 𝑧 − 𝑙 < 𝜖Here 𝑓 𝑥 − 𝑙 < 𝜖
and 0 < 𝑥 − 𝑥0 < 𝛿

Here 0 < 𝑧 − 𝑧0 < 𝛿

𝑓 𝑥 = 𝑙

𝑥0
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Derivatives (page 77)

Derivative: If 𝑓 (𝑧) is single-valued in some region 𝑅 of the 𝑧 plane, the derivative of 𝑓 (𝑧) is defined as

𝑓/ 𝑧 = lim
∆𝑧→0

𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧

provided that the limit exists independent of the manner in which ∆𝑧 → 0. In such a case, we say that 𝑓 (𝑧) is

differentiable at 𝑧. Although differentiability implies continuity, the reverse is not true.

𝒙

𝒇(𝒙)

Real function

𝑥

𝑓
𝑥

𝑥
−
∆
𝑥

𝑥
+
∆
𝑥

𝑓
𝑥
+
∆
𝑥

𝑓
𝑥
−
∆
𝑥

∆𝑥∆𝑥

𝑓/ 𝑥 = lim
∆𝑥→0

𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

∆𝑥

𝒙

𝒇(𝒙)

Real function

A discontinuous function can not 

be differentiable.

𝒙

𝒇 𝒙 = 𝒙

Continuous at the corner but not 

differentiable.
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Derivatives (page 77)

 Let 𝑧 be a point 𝑃 in the 𝑧 −plane and let 𝑤 be its image 𝑃/ in the w-plane under the transformation 𝑤 = 𝑓 𝑧 .

 If we give 𝑧 an increment ∆𝑧, we obtain the point Q of 𝑧 −plane. This point has image 𝑄/ in the 𝑤 plane. Thus, from 𝑤
plane, we see that 𝑃/𝑄/ represents the complex number ∆𝑤 = 𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧). It follows that the derivative at 𝑧 is given

𝒙 𝒐𝒓 𝑹𝒆

𝒚 𝒐𝒓 𝑰𝒎

Z-plane

∆𝑧 = 𝑧 + ∆𝑧 − 𝑧

𝑧

𝑃

Q

𝒙 𝒐𝒓 𝑹𝒆

𝒚 𝒐𝒓 𝑰𝒎

W-plane

𝑃/

𝑄/

∆𝑤
= 𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

𝑓/ 𝑧 = lim
∆𝑧→0

𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧
= lim

𝑄→𝑃

𝑃/𝑄/

𝑃𝑄

𝑀𝑎𝑝𝑝𝑖𝑛𝑔
𝑤 = 𝑓(𝑧)
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Analytic Function (page 77)

 Definition:

 If the derivative 𝑓/(𝑧) exists at all points 𝑧 of a region ℛ, then 𝑓 (𝑧) is said to be analytic in ℛ and is

referred to as an analytic function in ℛ or a function analytic in ℛ.

 A function 𝑓 (𝑧) is said to be analytic at a point 𝑧0 if there exists a neighborhood 𝑧 − 𝑧0 < 𝛿 at all points

of which 𝑓/(𝑧) exists.

Q. How do you check the differentiability of a function?

Ans. Checked the limit and continuity of the function at the given region.

Limit Continuity Differentiable

Or

Cauchy–Riemann Equations

DJG 16



 Definition:

 A necessary condition that w = 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦) be analytic in a region ℛ is that, in ℛ, 𝑢 and 𝑣 satisfy the 

Cauchy–Riemann equations

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 If the partial derivatives of the above equations are continuous in ℛ, then the Cauchy–Riemann equations are 

sufficient conditions that 𝑓 (𝑧) be analytic in ℛ.

Sufficient conditions

𝑎𝑛𝑑
𝜕𝑢

𝜕𝑟
=
1

𝑟

𝜕𝑣

𝜕𝜃

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃

 In polar form C-R equations 

𝑎𝑛𝑑

DJG 17
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Q. Show that 
𝑑

𝑑𝑧
 𝑧 does not exist anywhere, i.e., 𝑓 𝑧 = 𝑧/ is non-analytic anywhere. (without using C-R equations)

Solution: By definition,

𝑑

𝑑𝑧
𝑓 𝑧 = lim

∆𝑧→0

𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧

if this limit exists independent of the manner in 

which ∆𝑧 = ∆𝑥 + 𝑖∆𝑦 approaches zero

𝑑

𝑑𝑧
 𝑧 = lim

∆𝑧→0

𝑧 + ∆𝑧 −  𝑧

∆𝑧

= lim
∆𝑥→0
∆𝑦→0

𝑥 + 𝑖𝑦 + ∆𝑥 + 𝑖∆𝑦 − 𝑥 + 𝑖𝑦

∆𝑥 + 𝑖∆𝑦

= lim
∆𝑥→0
∆𝑦→0

𝑥 − 𝑖𝑦 + ∆𝑥 − 𝑖∆𝑦 − (𝑥 − 𝑖𝑦)

∆𝑥 + 𝑖∆𝑦

= lim
∆𝑥→0
∆𝑦→0

∆𝑥 − 𝑖∆𝑦

∆𝑥 + 𝑖∆𝑦

 𝑧
o

∆𝑥 → 0

∆𝑦 = 0

 𝑧o
∆𝑥 = 0

∆𝑦 → 0

 𝑧

∆𝑧

If ∆𝑦 = 0, the required limit is

𝑑

𝑑𝑧
 𝑧 = lim

∆𝑥→0
∆𝑦=0

∆𝑥−𝑖∆𝑦

∆𝑥+𝑖∆𝑦

= lim
∆𝑥→0
∆𝑦=0

∆𝑥

∆𝑥

= 1

If ∆x = 0, the required limit is

𝑑

𝑑𝑧
 𝑧 = lim

∆𝑥=0
∆𝑦→0

∆𝑥−𝑖∆𝑦

∆𝑥+𝑖∆𝑦

= −1

Then, since the limit depends on the manner in which ∆𝑧 → 0, the 

derivative does not exist, i.e., 𝑓 𝑧 = 𝑧/is non-analytic anywhere.
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Q. Show that 
𝑑

𝑑𝑧
 𝑧 does not exist anywhere, i.e., 𝑓 𝑧 = 𝑧/ is non-analytic anywhere. (using C-R equations)

Solution: The given function

𝑤 = 𝑓 𝑧 = 𝑥 + 𝑖𝑦

⇒ 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 𝑥 − 𝑖𝑦

Now taking the partial derivative of 𝑓 𝑧

𝜕𝑢

𝜕𝑥
≠
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

∴ 𝑢(𝑥, 𝑦) = 𝑥 𝑎𝑛𝑑 𝑣 𝑥, 𝑦 = −y

𝜕𝑢

𝜕𝑥
= 1

𝜕𝑣

𝜕𝑦
= −1

𝜕𝑢

𝜕𝑦
= 0

𝜕𝑣

𝜕𝑥
= 0

Since, the given function does not follow the C-R equations, 

therefore the function 𝑓 𝑧 = 𝑧/ is non-analytic.
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Q. Prove that a (a) necessary and (b) sufficient condition that 𝑤 = 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣 𝑥, 𝑦 be analytic in a region ℛ is that the

Cauchy–Riemann equations
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
and

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
are satisfied in ℛ where it is supposed that these partial derivatives are

continuous in R.

Solution:

(a) Necessity: In order for 𝑤 = 𝑓 𝑧 to be analytic, the limit

lim
∆𝑧→0

𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧
= 𝑓/(𝑧)

= lim
∆𝑥→0
∆𝑦→0

𝑢 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 + 𝑖𝑣 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 − 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦)

∆𝑥 + 𝑖∆𝑦

𝑧 = 𝑥 + 𝑖𝑦

𝑤 = 𝑓 𝑧 = 𝑢 + 𝑖𝑣

𝑤 = 𝑓 𝑧 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)

𝑤 = 𝑓 𝑧 + ∆𝑧 = 𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) + 𝑖𝑣(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)

∆𝑧 = ∆𝑥 + 𝑖∆𝑦

-----------(1)

must exist independent of the manner in which ∆𝑧 (or ∆𝑥 and ∆𝑦) approaches zero. We consider two possible approaches.

Case I: ∆𝑥 → 0, ∆𝑦 = 0. In this case eq. 1 becomes

𝑓/(𝑧) = lim
∆𝑥→0
∆𝑦=0

𝑢 𝑥 + ∆𝑥, 𝑦 + 𝑖𝑣 𝑥 + ∆𝑥, 𝑦 − 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦)

∆𝑥

= lim
∆𝑥→0
∆𝑦=0

𝑢 𝑥 + ∆𝑥, 𝑦 − 𝑢(𝑥, 𝑦)

∆𝑥
+ 𝑖

𝑣 𝑥 + ∆𝑥, 𝑦 − 𝑣(𝑥, 𝑦)

∆𝑥
=
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥

-----------(2)
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Case II: ∆𝑥 = 0, ∆𝑦 → 0. In this case eq. 1 becomes

𝑓/(𝑧) = lim
∆𝑥=0
∆𝑦→0

𝑢 𝑥, 𝑦 + ∆𝑦 + 𝑖𝑣 𝑥, 𝑦 + ∆𝑦 − 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦)

𝑖∆𝑦

= lim
∆𝑥=0
∆𝑦→0

𝑢 𝑥, 𝑦 + ∆𝑦 − 𝑢(𝑥, 𝑦)

𝑖∆𝑦
+
𝑣 𝑥, 𝑦 + ∆𝑦 − 𝑣(𝑥, 𝑦)

∆𝑦

=
1

𝑖

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑦

Now 𝑓 (𝑧) cannot possibly be analytic unless these two limits are identical i.e. eq. (2) and (3) are equal. Thus, a necessary 

condition that 𝑓 (𝑧) be analytic is

-----------(3)= −𝑖
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
= −𝑖

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑦

𝑂𝑟

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
𝑎𝑛𝑑 𝐶 − 𝑅 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
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𝒙 𝒐𝒓 𝑹𝒆

𝒚 𝒐𝒓 𝑰𝒎

Z-plane

∆𝑧

𝑧

𝑃

Q

𝒙 𝒐𝒓 𝑹𝒆

𝒚 𝒐𝒓 𝑰𝒎

W-plane

𝑃/

𝑄/

∆𝑤
= 𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

𝑓/ 𝑧 = lim
∆𝑧→0

𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧

𝑀𝑎𝑝𝑝𝑖𝑛𝑔
𝑤 = 𝑓(𝑧)

𝑆𝑖𝑛𝑐𝑒, ∆𝑤 is the small increment of the function 𝑤 = 𝑓(𝑧)

∆𝑤 = 𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

If 𝑓 (𝑧) is continuous and has a continuous first derivative in a region, then

∆𝑤 =
𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧
∆𝑧

= 𝑓/ 𝑧 + 𝜖 ∆𝑧

𝑊ℎ𝑒𝑟𝑒 𝜖 → 0 𝑎𝑠 ∆𝑧 → 0.𝑁𝑜𝑤 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 the differential of 𝑤 𝑜𝑟 𝑓(𝑧)

𝑑𝑤 = 𝑓/ 𝑧 𝑑𝑧 𝑊ℎ𝑒𝑛 ∆𝑧 → 0 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 ∆𝑧 = 𝑑𝑧 𝑎𝑛𝑑 ∆𝑤 = 𝑑𝑤

≠
𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧

𝑓/ 𝑧 + 𝜖 =
𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧
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(a) Sufficiency: Since
𝜕𝑢

𝜕𝑥
and

𝜕𝑢

𝜕𝑦
are supposed to be continuous, we have

∆𝑢 = 𝑢 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 − 𝑢(𝑥, 𝑦)

= 𝑢 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 − 𝑢(𝑥, 𝑦 + ∆𝑦) + 𝑢 𝑥, 𝑦 + ∆𝑦 − 𝑢(𝑥, 𝑦)

=
𝑢 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 − 𝑢(𝑥, 𝑦 + ∆𝑦)

∆𝑥
∆𝑥 +

𝑢 𝑥, 𝑦 + ∆𝑦 − 𝑢(𝑥, 𝑦)

∆𝑦
∆𝑦

=
𝜕𝑢

𝜕𝑥
+ 𝜖1 ∆𝑥 + (

𝜕𝑢

𝜕𝑦
+ 𝜂1)∆𝑦

=
𝜕𝑢

𝜕𝑥
∆𝑥 +

𝜕𝑢

𝜕𝑦
∆𝑦 + 𝜖1∆𝑥 + 𝜂1∆𝑦

𝑊ℎ𝑒𝑟𝑒 𝜖1 → 0 𝑎𝑛𝑑 𝜂1 → 0 𝑎𝑠 ∆𝑥 → 0 𝑎𝑛𝑑 ∆𝑦 → 0.

Similarly, since
𝜕𝑣

𝜕𝑥
and

𝜕𝑣

𝜕𝑦
are supposed to be continuous, we have

∆𝑣 =
𝜕𝑣

𝜕𝑥
∆𝑥 +

𝜕𝑣

𝜕𝑦
∆𝑦 + 𝜖2∆𝑥 + 𝜂2∆𝑦

𝑊ℎ𝑒𝑟𝑒 𝜖2 → 0 𝑎𝑛𝑑 𝜂2 → 0 𝑎𝑠 ∆𝑥 → 0 𝑎𝑛𝑑 ∆𝑦 → 0.

If the partial derivatives of the above equations are

continuous in ℛ, then the Cauchy–Riemann equations are

sufficient conditions that 𝑓 (𝑧) be analytic in ℛ.
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Since our function is

By the Cauchy-Riemann equations, (4) can be written as

𝑤 = 𝑓(𝑧)

= 𝑢 + 𝑖𝑣
Now,

∆𝑤 = ∆𝑢 + 𝑖∆𝑣

=
𝜕𝑢

𝜕𝑥
∆𝑥 +

𝜕𝑢

𝜕𝑦
∆𝑦 + 𝜖1∆𝑥 + 𝜂1∆𝑦 + 𝑖

𝜕𝑣

𝜕𝑥
∆𝑥 + 𝑖

𝜕𝑣

𝜕𝑦
∆𝑦 + 𝑖𝜖2∆𝑥 + 𝑖𝜂2∆𝑦

=
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
∆𝑥 +

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
∆𝑦 + 𝜖1 + 𝑖𝜖2 ∆𝑥 + (𝜂1+𝑖𝜂2)∆𝑦

=
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
∆𝑥 +

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
∆𝑦 + 𝜖∆𝑥 + 𝜂∆𝑦

𝑊ℎ𝑒𝑟𝑒 𝜖1 + 𝑖𝜖2 → 0 𝑎𝑛𝑑 𝜂1 + 𝑖𝜂2 → 0 𝑎𝑠 ∆𝑥 → 0 𝑎𝑛𝑑 ∆𝑦 → 0.

-----------(4)

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

Δ𝑤 =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
∆𝑥 + −

𝜕𝑣

𝜕𝑥
+ 𝑖

𝜕𝑢

𝜕𝑥
∆𝑦 + 𝜖∆𝑥 + 𝜂∆𝑦

=
𝜕𝑢

𝜕𝑥
∆𝑥 + 𝑖Δ𝑦 +

𝜕𝑣

𝜕𝑥
𝑖Δ𝑥 − Δ𝑦 + 𝜖∆𝑥 + 𝜂∆𝑦

=
𝜕𝑢

𝜕𝑥
∆𝑥 + 𝑖Δ𝑦 +

𝜕𝑣

𝜕𝑥
𝑖 Δ𝑥 −

1

𝑖
Δ𝑦 + 𝜖∆𝑥 + 𝜂∆𝑦
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Δ𝑤 =
𝜕𝑢

𝜕𝑥
∆𝑥 + 𝑖Δ𝑦 +

𝜕𝑣

𝜕𝑥
𝑖 Δ𝑥 + 𝑖Δ𝑦 + 𝜖∆𝑥 + 𝜂∆𝑦

Then, on dividing by Δ𝑥 + 𝑖Δ𝑦 on both side and taking the limit as Δ𝑧 → 0

lim
∆𝑧→0

𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

∆𝑧
= ∆𝑤 = 𝑓 𝑧 + ∆𝑧 − 𝑓(𝑧)

𝑑𝑤

𝑑𝑧
= 𝑓/(𝑧) =

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥

So that the derivative exist and unique i.e. 𝑓(𝑧) is analytic in ℛ.

We will assume that 

the derivative are 

continuous and 

proceed with this 

assumption

We use C-R 

equations

Get the expression
𝑑𝑤

𝑑𝑧
= 𝑓/(𝑧) =

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥

The final expression is 

nothing but the derivative 

of the given function f(z)

So the function f(z) is 

analytic 

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥

When Then
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Home work (page no. 54, 80)

8.
𝑑

𝑑𝑧
sin ℎ𝑧 = cos(ℎ𝑧)

9.
𝑑

𝑑𝑧
𝑐𝑜𝑠 ℎ𝑧 = 𝑠𝑖𝑛(ℎ𝑧)

6. sin(𝑖𝑧) = 𝑖𝑠𝑖𝑛(ℎ𝑧)

7. cos(𝑖𝑧) = 𝑐𝑜𝑠(ℎ𝑧)

5. 𝑠𝑖𝑛2𝑧 + 𝑐𝑜𝑠2𝑧 = 1

3. sin ℎ𝑧 =
𝑒𝑧 − 𝑒−𝑧

2

4. cos ℎ𝑧 =
𝑒𝑧 + 𝑒−𝑧

2

1. 𝑠𝑖𝑛𝑧 =
𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖

2. cos 𝑧 =
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2

 𝑃𝑟𝑜𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
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Cauchy–Riemann Equations (page 92)

Q. Show that the function 𝑠𝑖𝑛𝑧 is analytic and hence find the derivative 𝑓/(𝑧).

Solution:

𝑤 = 𝑓(𝑧)

Since the given function is

𝑢 + 𝑖𝑣 = 𝑠𝑖𝑛𝑧

= sin(𝑥 + 𝑖𝑦)

= sin 𝑥 cos 𝑖𝑦 + 𝑐𝑜𝑠𝑥 sin 𝑖𝑦

= sin 𝑥 cos ℎ𝑦 + 𝑖 𝑐𝑜𝑠𝑥 sin ℎ𝑦
cos 𝑖𝑦 = 𝑐𝑜𝑠ℎ𝑦

sin 𝑖𝑦 = 𝑖 𝑠𝑖𝑛ℎ𝑦

∴ 𝑢 = sin 𝑥 cos ℎ𝑦 𝑎𝑛𝑑 𝑣 = 𝑐𝑜𝑠𝑥 sin ℎ𝑦

Now by using C-R equations

𝜕𝑢

𝜕𝑥
= 𝑐𝑜𝑠𝑥. 𝑐𝑜𝑠ℎ𝑦

𝜕𝑢

𝜕𝑦
= 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛ℎ𝑦

𝜕𝑣

𝜕𝑥
= −𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦

𝜕𝑣

𝜕𝑦
= 𝑐𝑜𝑠𝑥. 𝑐𝑜𝑠ℎ𝑦

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

Since the C-R equation verified so the function is analytic.

Now,

𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣

⇒ 𝑓/ 𝑧 =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥

= 𝑐𝑜𝑠𝑥. 𝑐𝑜𝑠ℎ𝑦 − 𝑖𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦

= 𝑐𝑜𝑠𝑥. 𝑐𝑜𝑠ℎ𝑦 − 𝑠𝑖𝑛𝑥. (𝑖𝑠𝑖𝑛ℎ𝑦)

= 𝑐𝑜𝑠𝑥. cos(𝑖𝑦) − 𝑠𝑖𝑛𝑥. sin(𝑖𝑦)

= cos 𝑥 + 𝑖𝑦

= cos 𝑧

∴ 𝑓/ 𝑧 = cos 𝑧
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Cauchy–Riemann Equations

Q. Show that the function ln(𝑧) is analytic and hence find the derivative 𝑓/(𝑧).

Solution:

𝑤 = 𝑓(𝑧)

Since the given function is

𝑢 + 𝑖𝑣 = 𝑙𝑛𝑧

= ln(𝑟𝑒𝑖𝜃)

= ln(𝑟) + 𝑙𝑛(𝑒𝑖𝜃)

= ln( 𝑥2 + 𝑦2 + 𝑖 𝑡𝑎𝑛−1(  𝑦 𝑥)

𝑤ℎ𝑒𝑟𝑒, 𝜃 = 𝑡𝑎𝑛−1(  𝑦 𝑥)

𝑍 = 𝑟𝑒𝑖𝜃

∴ 𝑢 =
1

2
ln(𝑥2 + 𝑦2) 𝑎𝑛𝑑 𝑣 = 𝑡𝑎𝑛−1 (  𝑦 𝑥)

Now by using C-R equations

𝜕𝑢

𝜕𝑥
=  𝑥 (𝑥2 + 𝑦2)

𝜕𝑢

𝜕𝑦
=  𝑦 (𝑥2 + 𝑦2)

𝜕𝑣

𝜕𝑥
= −  𝑦 (𝑥2 + 𝑦2)

𝜕𝑣

𝜕𝑦
=  𝑥 (𝑥2 + 𝑦2)

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

Since the C-R equations are verified so the function is analytic.

Now,

𝑤 = 𝑓(𝑧) = 𝑢 + 𝑖𝑣

⇒ 𝑓/ 𝑧 =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥

=
𝑥

(𝑥2 + 𝑦2)
− 𝑖.

𝑦

(𝑥2 + 𝑦2)

∴ 𝑓/ 𝑧 =
1

𝑧

=
𝑥 − 𝑖𝑦

(𝑥2 + 𝑦2)

=
𝑥 − 𝑖𝑦

𝑥 + 𝑖𝑦 . (𝑥 − 𝑖𝑦)

=
1

𝑥 + 𝑖𝑦

𝑓/ 𝑧 =
𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦

This is the required derivative of ln(𝑧).
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Singular Points or Singularities (page 81-82)

Definition: Singular point

If 𝒇(𝒛) fails to be analytic in some point 𝒁𝟎 but analytic in some neighbourhood of that point then the point 𝑍0 is called

the singular point or singularity of 𝑓(𝑧).

Example 1: Find the singular point of the function 𝑓 𝑧 =
1

𝑍
.

𝑅𝑒

𝐼𝑚

Z-plane

But, 𝒇(𝒛) is analytic in the region 0 < 𝑧 < 𝑅

𝑧0(𝑧 = 0)

Here 𝒇(𝒛) is not analytic at the point 𝑧0

𝑧
𝑅

When we put Z=0, the function will blow up and

elsewhere the function is analytic except Z=0. So Z=0 is

called the singular point.

Example 2: Find the singular point of the function 𝑓 𝑧 =
1

𝑍+𝑖
.

𝑅𝑒

𝐼𝑚

Z-plane

𝑧 = −𝑖

𝑅

When we put 𝑍 = −𝑖 , the function will blow up and

elsewhere the function is analytic except 𝑍 = −𝑖. So 𝑍 = −𝑖
is called the singular point.

But, 𝒇(𝒛) is analytic in the region 0 < 𝑧 < 𝑅

Here 𝒇(𝒛) is not analytic at the point 𝑍 = −𝑖
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Singular Points or Singularities (page 81-82)

Just put the denominator of the given function equal to zero and solve 

the equation, the obtained roots or solution of the equation denotes the 

singularities.

How to find singularity of a given function?
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Singular Points or Singularities (page 81-82)

Types of singularities:

1. Isolated singularities: The point 𝑧 = 𝑧0 is called an isolated singularity or isolated singular point of 𝑓 (𝑧) if we can find 

𝛿 > 0 such that the circle 𝑧 − 𝑧0 = 𝛿 encloses no singular point other than 𝑧0 (i.e., there exists a deleted 𝛿 neighborhood 

of 𝑧0 containing no singularity).

Example 1: Find the singular point of the function 𝑓 𝑧 =
1

𝑧2+4
.

 Here, the singular points are

𝑧2 + 4 = 0

𝑂𝑟 𝑍 = ±2𝑖

So, here we get two singular points, one at 𝑍 = 2𝑖 and another at 𝑍 = −2𝑖.

𝑅𝑒

𝐼𝑚

Z-plane

𝑧0 = −2𝑖

𝑧0 = 2𝑖

• If we can find 𝛿 > 0 such that the circle 𝑧 − 2𝑖 = 𝛿 encloses no singular point other than 𝑧 = 2𝑖 then this singularity 

is called isolated singular point. 

• If we can find 𝛿 > 0 such that the circle 𝑧 + 2𝑖 = 𝛿 encloses no singular point other than 𝑧 = −2𝑖 then this singularity 

is called isolated singular point. DJG 31



Singular Points or Singularities (page 81-82)

Types of singularities:

2. Poles: If 𝑧0 is an isolated singularity and we can find a positive integer 𝑛 such that lim
𝑧→𝑧0

𝑧 − 𝑧0
𝑛 𝑓(𝑧) = A ≠ 0, then 𝑧 −

𝑧0 is called a pole of order 𝑛. If 𝑛 = 1, then 𝑧0 is called a simple pole.

Example 1: Find the singular point of the function 𝑓 𝑧 =
1

𝑧2+4
.

 Here, the singular points are

𝑧2 + 4 = 0

𝑂𝑟 𝑍 = ±2𝑖

So, here we get two singular points, one at 𝑍 = 2𝑖 and

another at 𝑍 = −2𝑖. Now, for 𝑍 = 2𝑖

• So 𝒁 = 𝟐𝒊 is a pole of order 1 or simple pole.

= lim
𝑧→𝑧0

𝑧 − 𝑧0
𝑛 𝑓(𝑧)

= lim
𝑧→2𝑖

𝑧 − 2𝑖 1
1

𝑧2 + 4

= lim
𝑧→2𝑖

𝑧 − 2𝑖 1
1

(𝑧 + 2𝑖)(𝑧 − 2𝑖)

= lim
𝑧→2𝑖

1

(𝑧 + 2𝑖)

=  1 4𝑖

Similarly, for 𝑍 = −2𝑖

= lim
𝑧→𝑧0

𝑧 − 𝑧0
𝑛 𝑓(𝑧)

= lim
𝑧→−2𝑖

𝑧 + 2𝑖 1
1

𝑧2 + 4

= lim
𝑧→−2𝑖

𝑧 + 2𝑖 1
1

(𝑧 + 2𝑖)(𝑧 − 2𝑖)

= lim
𝑧→−2𝑖

1

(𝑧 − 2𝑖)

=  1 −4𝑖

• So 𝒁 = −𝟐𝒊 is a pole of order 1 or simple pole.
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Singular Points or Singularities (page 81-82)

Example 2: Find the singular point of the function 𝑓 𝑧 =
1

(𝑧2+4)2
.

 Here, the singular points are

𝑧2 + 4 = 0

𝑂𝑟 𝑍 = ±2𝑖

So, here we get two singular points, one at 𝑍 = 2𝑖 and

another at 𝑍 = −2𝑖. Now, for 𝑍 = 2𝑖

• So 𝒁 = 𝟐𝒊 is a pole of order 2.

= lim
𝑧→𝑧0

𝑧 − 𝑧0
𝑛 𝑓(𝑧)

= lim
𝑧→2𝑖

𝑧 − 2𝑖 2
1

(𝑧2 + 4)2

= lim
𝑧→2𝑖

𝑧 − 2𝑖 2
1

𝑧 − 2𝑖 2 𝑧 + 2𝑖 2

= lim
𝑧→2𝑖

1

𝑧 + 2𝑖 2

=  1 −16

Similarly, for 𝑍 = −2𝑖

• So 𝒁 = −𝟐𝒊 is a pole of order 2.

= lim
𝑧→−2𝑖

𝑧 − 2𝑖 2
1

(𝑧2 + 4)2

= lim
𝑧→−2𝑖

𝑧 − 2𝑖 2
1

𝑧 − 2𝑖 2 𝑧 + 2𝑖 2

= lim
𝑧→−2𝑖

1

𝑧 − 2𝑖 2

=  1 −16

Example 3: 𝑓 𝑧 =
1

(𝑧−3)2

Example 4: 𝑓 𝑧 =
(3𝑧−2)

𝑧−2 2(𝑧−1)

has a pole of order 2 at 𝑧 = 3.

has a pole of order 2 at

𝑧 =2, and simple pole at

𝑧 = 1.DJG 33



Types of singularities:

3. Branch point: Branch Points of multiple-valued functions are non-isolated singular points since a multiple-valued 

function is not continuous and, therefore, not analytic in a deleted neighborhood of a branch point.

Example 1: 𝑓 𝑧 = 𝑧 − 3 1/2 has a branch point at 𝑧 = 3. This branch point i.e. 𝑧 = 3 is called a non-isolated singular

point.

Example 2: what is the singular point of 𝑓 𝑧 = 𝑧 − 3 .

Example 3: 𝑓 𝑧 = ln(𝑧2 + 𝑧 − 2) has a branch point where 𝑧2 + 𝑧 − 2 = 0, i. e. , at z = 1 and z = −2.These branch

points are called as non−isolated singular point.

Singular Points or Singularities (page 81-82)

 It does not has any singular point.
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4. Removable singularities: An isolated singular point 𝑧0 is called a removable singularity of 𝑓 (𝑧) if lim
𝑧→𝑧0

𝑓(𝑧) exists. By 

defining 𝑓 𝑧0 = lim
𝑧→𝑧0

𝑓(𝑧), it can then be shown that 𝑓 (𝑧) is not only continuous at 𝑧0 but is also analytic at 𝑧0.

Example 1: Find the type of singular point of 𝑓 𝑧 =
𝑠𝑖𝑛𝑧

𝑧

Singular Points or Singularities (page 81-82)

𝑓 𝑧 =
𝑠𝑖𝑛𝑧

𝑧

𝑓 𝑧 =
1

𝑧
(𝑠𝑖𝑛𝑧)

𝑓 𝑧 =
1

𝑧
(𝑧 −

𝑧3

3!
+
𝑧5

5!
−⋯)

𝑓 𝑧 = 1 −
𝑧2

3!
+
𝑧4

5!
−⋯

Again,

lim
𝑧→0

𝑓(𝑧) = lim
𝑧→0

(1 −
𝑧2

3!
+
𝑧4

5!
− ⋯)

= 1

 𝐼𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑧 = 𝟎 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑖𝑛𝑡. 𝑆𝑖𝑛𝑐𝑒 𝑖𝑓
𝑤𝑒 𝑝𝑢𝑡 𝑧=0 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑙𝑙 𝑏𝑙𝑜𝑤 𝑢𝑝.

𝑁𝑜𝑤,

Hence we have seen that the singular point 𝒛 = 𝟎 is

removable.

It has been found that 𝑓 (𝑧) if lim
𝑧→0

𝑓(𝑧) exists

Therefore, the given function has a removable 

singular point at 𝑧 = 0.

Types of singularities:
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5. Essential singularities: An isolated singularity that is not a pole or removable singularity is called an essential singularity.

Example 1: Find the type of singular point of 𝑓 𝑧 = 𝑒1/𝑧

Singular Points or Singularities (page 81-82)

𝑓 𝑧 = 𝑒1/𝑧

 Let us expand the given function 

If a function has an isolated singularity, then the singularity is either removable, a 

pole, or an essential singularity.

= 1 +
1

𝑧
+
1

2!

1

𝑧

2

+
1

3!

1

𝑧

3

+⋯

So, it is found that 𝑧 = 0 is a singular point and it is neither removable singularity nor a pole (since the power is goes on 

increasing).

Such type of singularities are called essential singularities.

Types of singularities:
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Integration of real fn using CRT07-09-2021

Laurent Series



Integration

Definition:

 In mathematics, an integral assigns numbers to functions in a way that describes area, volume, and other concepts that arise

by combining infinitesimal data. The process of finding integrals is called integration. (from Wikipedia)

𝒙

𝒚 = 𝒇(𝒙)

DJG 38

Integration is basically summation, but with some differences

 Summation has been used when the data are discrete

 Integration has been used when the data are continuous

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒

𝑥
1

𝑥
2

𝑥
3

𝑥
𝑛
−
1

𝑎
=
𝑥
0

𝑏
=
𝑥
𝑛

𝝃𝟏 𝝃𝟐 𝝃𝟑 𝝃𝒏

𝑓(𝝃𝟐)

𝑓(𝝃𝟏)

𝑓(𝝃𝟑)

𝑓(𝝃𝒏)

=  

𝑘=1

𝑛

𝑓 𝜉𝑘 𝑥𝑘 − 𝑥𝑘−1

=  

𝑘=1

𝑛

𝑓 𝜉𝑘 𝛥𝑥𝑘

When 𝛥𝑥𝑘 → 0, (exist only when the function is continuous)

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 =  

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

= 𝑓 𝜉1 𝑥1 − 𝑥0

= 𝐴𝑑𝑑 𝑢𝑝 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑡𝑟𝑖𝑝

+𝑓 𝜉2 𝑥2 − 𝑥1 +⋯+ 𝑓 𝜉𝑛 𝑥𝑛 − 𝑥𝑛−1

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Infinitesimal


Complex Line Integrals (page 111)

 Let 𝑓 (𝑧) be continuous at all points of a curve 𝐶 Fig., which we shall assume has a finite length, i.e., C is a rectifiable 

curve.

𝒙

𝒚

DJG 39

𝒂 = 𝒛𝟎

𝒃 = 𝒛𝒏

𝒛𝟏

𝒛𝟐

𝒙

𝒚

𝒂 = 𝒛𝟎

𝒃 = 𝒛𝒏

𝒛𝟏

𝒛𝟐

𝒛𝒏−𝟏

𝒛𝒌

𝒛𝒌−𝟏 𝝃𝒌

𝝃𝟏

𝝃𝟐

𝝃𝒏

𝒛𝒏−𝟏

𝒛𝒌

𝒛𝒌−𝟏

Now, subdivide C into n parts by means of points 𝒛𝟏, 𝒛𝟐, . . . , 𝒛𝒏−𝟏, chosen arbitrarily, and call 𝒂 = 𝒛𝟎, 𝒃 = 𝒛𝒏.

On each arc joining 𝒛𝒌−𝟏 to 𝒛𝒌 [where 𝑘 goes from 1 𝑡𝑜 𝑛], choose a point 𝝃𝒌.



Complex Line Integrals (page 111)

 Let 𝑓 (𝑧) be continuous at all points of a curve 𝐶 Fig., which we shall assume has a finite length, i.e., C is a rectifiable 

curve.

DJG 40

𝒙

𝒚

𝒂 = 𝒛𝟎

𝒃 = 𝒛𝒏

𝒛𝟏

𝒛𝟐

𝒛𝒏−𝟏

𝒛𝒌

𝒛𝒌−𝟏 𝝃𝒌

𝝃𝟏

𝝃𝟐

𝝃𝒏

Now, subdivide C into n parts by means of points 𝒛𝟏, 𝒛𝟐, . . . , 𝒛𝒏−𝟏, chosen arbitrarily, and call 𝒂 = 𝒛𝟎, 𝒃 = 𝒛𝒏.

On each arc joining 𝒛𝒌−𝟏 to 𝒛𝒌 [where 𝑘 goes from 1 𝑡𝑜 𝑛], choose a point 𝝃𝒌.

From the sum,

𝑆𝑛 = 𝑓 𝝃𝟏 𝒛𝟏 − 𝒂 + 𝑓 𝝃𝟐 𝒛𝟐 − 𝒛𝟏 +⋯+ 𝑓 𝝃𝒏 𝒃 − 𝒛𝒏−𝟏

On writing 𝒛𝒌 − 𝒛𝒌−𝟏 = 𝚫𝒛𝒌, this becomes

𝑆𝑛 =  

𝑘=1

𝑛

𝑓 𝝃𝒌 𝒛𝒌 − 𝒛𝒌−𝟏

=  

𝑘=1

𝑛

𝑓 𝝃𝒌 𝚫𝒛𝒌



Complex Line Integrals (page 111)
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𝒙

𝒚

𝒂 = 𝒛𝟎

𝒃 = 𝒛𝒏

𝒛𝟏

𝒛𝟐

𝒛𝒏−𝟏

𝒛𝒌

𝒛𝒌−𝟏 𝝃𝒌

𝝃𝟏

𝝃𝟐

𝝃𝒏

Let the number of subdivisions 𝒏 increase in such a way that the largest of the chord lengths 𝚫𝒛𝒌 approaches zero. Then,

since 𝑓 (𝑧) is continuous, the sum 𝑆𝑛 approaches a limit that does not depend on the mode of subdivision and we denote

this limit by

 

𝒂

𝒃

𝒇 𝒛 𝒅𝒛 𝑜𝑟  

𝑪

𝒇 𝒛 𝒅𝒛

called the complex line integral or simply line integral of

𝑓 (𝑧) along curve C, or the definite integral of 𝑓 (𝑧) from

𝑎 𝑡𝑜 𝑏 along curve C.

In such a case, 𝑓 (𝑧) is said to be integrable along C. If 𝑓 (𝑧) is

analytic at all points of a region 𝑅 and if C is a curve lying in 𝑅,

then 𝑓 (𝑧) is continuous and therefore integrable along C.



Line Integral for Real Function (no need for exam)
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Q. Calculate the line integral of the function 𝒗 = 𝒚𝟐 𝒙 + 𝟐𝒙 𝒚 + 𝟏  𝒚 from the point 𝒂 = (𝟏, 𝟏, 𝟎) to the point

𝒃 = (𝟐, 𝟐, 𝟎) along path along the path (1) 𝑎𝑛𝑑 (2) as shown in figure. Also find the close path integral that goes from

𝑎 to 𝑏 along 𝑝𝑎𝑡ℎ (1) and return to a along 𝑝𝑎𝑡ℎ (2).

𝒙

𝒚

𝟏 𝟐

𝟏

𝟐

𝒂

𝒃

(1)

(2)

(𝑖)

(𝑖𝑖)

Solution: Since, we know

𝑑𝑙 = 𝑑𝑥 𝑥 +dy 𝑦 +dz 𝑧

Path (1) consist of two parts.

Along the (i) horizontal segment, 𝑑𝑦 = 𝑑𝑧 = 0, 𝑠𝑜

𝑑𝑙 = 𝑑𝑥 𝑥 , 𝑦 = 1,

∴  𝑣. 𝑑𝑙 = 𝑦2𝑑𝑥 = 𝑑𝑥

So, the line integral

 
1

2

 𝑣. 𝑑𝑙 =  
1

2

𝑑𝑥 = 1

On the (ii) vertical segment, 𝑑𝑥 = 𝑑𝑧 = 0, 𝑠𝑜

𝑑𝑙 = 𝑑𝑦 𝑦 , 𝑥 = 2,

∴  𝑣. 𝑑𝑙 = 4(𝑦 + 1)𝑑𝑦

So, the line integral

 
1

2

 𝑣. 𝑑𝑙 =  
1

2

4(𝑦 + 1)𝑑𝑦 = 10

So, by the path (1)

 
𝒂

𝒃

𝒗. 𝒅𝒍 = 𝟏 + 𝟏𝟎 = 𝟏𝟏

Meanwhile, on path (2), 𝑥 = 𝑦, 𝑑𝑥 = 𝑑𝑦, 𝑎𝑛𝑑 𝑑𝑧 = 0, 𝑠𝑜

𝑑𝑙 = 𝑑𝑥  𝑥 + 𝑑𝑥 𝑦 ,

∴  𝑣. 𝑑𝑙 = 𝑥2𝑑𝑥 + 2𝑥 𝑥 + 1 𝑑𝑥 = (3𝑥2 + 2𝑥)𝑑𝑥

So, the line integral along path (2)

 
𝒂

𝒃

𝒗. 𝒅𝒍 =  
𝟏

𝟐

(𝟑𝒙𝟐 + 𝟐𝒙)𝒅𝒙 = 𝟏𝟎
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Now, for the loop that goes out (1) and back (2)

𝒙

𝒚

𝟏 𝟐

𝟏

𝟐

𝒂

𝒃

(1)

(2)

(𝑖)

(𝑖𝑖)

 𝒗. 𝒅𝒍 = 11 − 10 = 1

Also, for the loop that goes out (2) and back (1)

 𝒗. 𝒅𝒍 = 10 − 11 = −1

So, what we have found in this line integration

 The line integration along path (1) and path (2) both have different values.

 The closed line integration for the loop that goes out (1) and back (2) is

different for that of goes out (2) and back (1).

The line integration is path dependent for real function

Line Integral for real function (no need for exam)
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Q. Find the line integral for 𝑓(𝑧) = 𝑧 for the path as shown in figure.

𝟏

𝒙

𝒚

𝟏

Path (1)

𝒙

𝒚

𝟏

𝟏

Path (2)

𝒙

𝒚

𝟏

𝟏

Path (3)

Complex Line Integrals (only for concept)
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𝒙

𝒚

𝟏

𝟏

Path (1)

Solution: Since,

𝑧 = 𝑥 + 𝑖𝑦

𝑁𝑜𝑤, 𝑓 𝑧 = 𝑥 + 𝑖 𝑦

∴ 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 
𝐶

𝑓 𝑧 𝑑𝑧 =  
𝑐

(𝑥 + 𝑖𝑦)(𝑑𝑥 + 𝑖𝑑𝑦)

Path (1):

(𝟎, 𝟎)

(𝟏, 𝟏)

 
𝐶

𝑓 𝑧 𝑑𝑧 =  
0

1

(0 + 𝑖𝑦)(0 + 𝑖𝑑𝑦) +  
0

1

(𝑥 + 𝑖. 1)(𝑑𝑥 + 𝑖. 0)

𝑥 = 0, 𝑦 = 0 → 1 𝑥 = 0 → 1, 𝑦 = 1

=  
0

1

(−𝑦𝑑𝑦) +  
0

1

(𝑥𝑑𝑥 + 𝑖𝑑𝑥)

= −
1

2
+ 0 +

1

2
+ 𝑖

= 𝑖

Complex Line Integrals (only for concept)
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Path (2):

 
𝐶

𝑓 𝑧 𝑑𝑧 =  
0

1

(𝑥 + 0)(𝑑𝑥 + 0) +  
0

1

(1 + 𝑖. 𝑦)(0 + 𝑖. 𝑑𝑦)

𝑥 = 0 → 1, 𝑦 = 0 𝑥 = 1, 𝑦 = 0 → 1

=  
0

1

(𝑥𝑑𝑥) +  
0

1

(𝑖𝑑𝑦 − 𝑦𝑑𝑦)

=
1

2
+ 𝑖 −

1

2

= 𝑖

𝒙

𝒚

𝟏

𝟏

Path (2)

Complex Line Integrals (only for concept)



DJG 47

Path (3):

 
𝐶

𝑓 𝑧 𝑑𝑧 =  
0

1

(𝑥 + 𝑖𝑥)(𝑑𝑥 + 𝑖𝑑𝑥)

𝑥 = 𝑦, 𝑑𝑥 = 𝑑𝑦, x = 0 → 1

=  
0

1

(𝑥𝑑𝑥 + 𝑖. 2𝑥𝑑𝑥 − 𝑥𝑑𝑥)

=  
0

1

(𝑖. 2𝑥𝑑𝑥)

= 𝑖. 2.
1

2

= 𝑖

So, it is found that the line integration of analytic complex function is 

path independent.

𝒙

𝒚

𝟏

𝟏

𝒙

𝒚

𝟏

𝟏

Path (3)

The close path/line integral of analytic complex function is always 

zero.

 
𝐶

𝑓 𝑧 𝑑𝑧 = 𝑖 − 𝑖 = 0

Complex Line Integrals (only for concept)



DJG 48

Q. Find the line integral for 𝒇(𝒛) =  𝒛 for the path as shown in figure.

𝒙

𝒚

𝟏

Path (2)

𝒙

𝒚

𝟏

𝟏

Path (1)

Solution: Since,

𝑧 = 𝑥 + 𝑖𝑦

𝑁𝑜𝑤, 𝑓 𝑧 = 𝑥 − 𝑖𝑦

∴ 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 
𝐶

𝑓 𝑧 𝑑𝑧 =  
𝑐

(𝑥 − 𝑖𝑦)(𝑑𝑥 + 𝑖𝑑𝑦)

⇒  𝑧 = 𝑥 − 𝑖𝑦

Path (1):

 
𝐶

𝑓 𝑧 𝑑𝑧 =  
0

1

(𝑥 − 0)(𝑑𝑥 + 0) +  
0

1

(1 − 𝑖. 𝑦)(0 + 𝑖. 𝑑𝑦)

𝑥 = 0 → 1, 𝑦 = 0 𝑥 = 1, 𝑦 = 0 → 1

=  
0

1

(𝑥𝑑𝑥) +  
0

1

(𝑖. 𝑑𝑦 + 𝑦𝑑𝑦)

=
1

2
+ 𝑖 +

1

2

= 1 + 𝑖

Complex Line Integrals (only for concept)
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𝒙

𝒚

𝟏

Path (2)

𝒙

𝒚

𝟏

𝟏

Path (1)

Path (2):

 
𝐶

𝑓 𝑧 𝑑𝑧 =  
0

1

(0 − 𝑖𝑦)(0 + 𝑖𝑑𝑦) +  
0

1

(𝑥 − 𝑖. 1)(𝑑𝑥 + 𝑖. 0)

𝑥 = 0, 𝑦 = 0 → 1 𝑥 = 0 → 1, 𝑦 = 1

=  
0

1

(𝑦𝑑𝑦) +  
0

1

(𝑥𝑑𝑥 − 𝑖𝑑𝑥)

=
1

2
+
1

2
− 𝑖

= 1 − 𝑖

So, it is found that the line integration of non-analytic complex 

function is path dependent.

The close path/line integral of non-analytic complex function is not 

zero.
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 Let 𝑓 (𝑧) be analytic in a region ℛ and on its boundary 𝐶. Then

 
𝐶

𝑓 𝑧 𝑑𝑧 = 0

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem or Cauchy–Goursat

theorem, is valid for both simply- and multiply-connected regions.

Cauchy’s Theorem (Statement):

𝒙

𝒚

ℛ

𝐶

𝑓 (𝑧) is analytic

Note: This is not Cauchy’s integral formula.
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𝒙

𝒚

Fig.: Continuous curve or arc

𝒙

𝒚

Fig.: Simple closed curve 

𝒙

𝒚

Fig.: Non-Simple closed curve 

Q. What is a simple closed curve? (page 83)

 A closed curve that does not intersect itself anywhere is called a simple closed curve.



Simply and Multiply Connected (Page 113)

 A region ℛ is called simply-connected if any simple closed curve, which lies in ℛ, can be shrunk to a point without 

leaving ℛ. A region ℛ, which is not simply-connected, is called multiply-connected.

𝒙

𝒚

ℛ

Γ

𝒙

𝒚

ℛ

Γ

𝒙

𝒚

Γ

Here, ℛ is the region defined by 𝑧 < 2.

Γ is any simple closed curve lying in ℛ and it can be 

shrunk to a point that lies in ℛ, and thus does not leave R, 

so that R is simply-connected

Here, ℛ is the region defined by 1 < |𝑍| < 2. 

Γ is any simple closed curve lying in ℛ and it can not 

possibly shrunk to a point without leaving ℛ, so that ℛ is 

multiply-connected.

Fig.: (1) simply-connected region Fig.: (2) multiply-connected region 

with one hole

Fig.: (3) multiply-connected region 

with three holes



Jordan Curve Theorem (Page 114)
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Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called a Jordan curve

Jordan Curve 

Jordan Curve Theorem

A Jordan curve divides the plane into two regions having the curve as a common boundary. That region, which is bounded

[i.e., is such that all points of it satisfy 𝑧 < 𝑀 , where M is some positive constant], is called the interior or inside of the

curve, while the other region is called the exterior or outside of the curve.

𝒙

𝒚

ℛ

Γ

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟

Exterior
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 The boundary 𝐶 of a region is said to be traversed in the positive sense or direction if an observer travelling in this

direction [and perpendicular to the plane] has the region to the left.

𝒙

𝒚

ℛ

𝐶

 
𝐶

𝑓 𝑧 𝑑𝑧 = 0

 We use the special symbol

to denote integration of 𝑓 (𝑧) around the boundary C in the positive sense. The integral around C is often called a 

contour integral. 

 In the case as shown in the figure, the positive direction is the

counterclockwise direction for the outer circle.

 In the case as shown in the figure, the positive direction is the

clockwise direction for the inner circle.

Note:



Contour Integration (wikipedia)
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Contour:

Fig.: Contour line.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths 

in the complex plane.

A curve, which is composed of a finite number of smooth arcs, is

called a piecewise or sectionally smooth curve or sometimes a contour.

Or

An outline representing or bounding the shape or form of something.

Contour Integration:

Contour integration methods include:

 direct integration of a complex-valued function along a curve in the complex plane (a contour)

 application of the Cauchy integral formula; and

 application of the residue theorem.



Green’s Theorem in the Plane (114) 
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 Let 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be continuous and have continuous partial derivatives in a region R and on its boundary C.

Green’s theorem states that

 
𝐶

𝑃𝑑𝑥 + 𝑄𝑑𝑦 = 

𝑅

𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
𝑑𝑥𝑑𝑦

The theorem is valid for both simply- and multiply-connected regions. 𝒙

𝒚

ℛ

𝑓 𝑧 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐

 Let 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) be continuous and have continuous partial derivatives in a region Rand on its boundary C.

Green’s theorem states that

 
𝐶

𝑢𝑑𝑥 + 𝑣𝑑𝑦 = 

𝑅

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
𝑑𝑥𝑑𝑦

We can simply replace the 𝑃 and 𝑄 with 𝑢 and 𝑣 to get a better visualization
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Q. Prove Cauchy’s theorem  𝐶 𝑓 𝑧 𝑑𝑧 = 0 if 𝑓 (𝑧) is analytic and continuous at all points inside and on a simple closed 

curve 𝐶 Or Prove Cauchy’s theorem for simply connected region.

𝒙

𝒚

ℛ

𝑓 𝑧 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐
Solution:

Since 𝑓 𝑧 is analytic and has a continuous derivative, so we can write

Let us consider, 𝑓 𝑧 = 𝑢 + 𝑖𝑣 , where 𝑧 = 𝑥 + 𝑖𝑦 and 𝑢 and 𝑣 are function of 𝑥 and 𝑦.

𝑓/ 𝑧 =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦

𝑢𝑠𝑖𝑛𝑔 𝐶 − 𝑅 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

The given contour integration can be written as,

 
𝐶

𝑓 𝑧 𝑑𝑧 =  
𝐶

(𝑢 + 𝑖𝑣)(𝑑𝑥 + 𝑖𝑑𝑦) =  
𝐶

𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖  
𝐶

𝑣𝑑𝑥 + 𝑢𝑑𝑦

Now, using Green’s theorem

 
𝐶

𝑓 𝑧 𝑑𝑧 = 

𝑅

−
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
𝑑𝑥𝑑𝑦 + 

𝑅

𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦 = 0

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥

𝑢𝑠𝑖𝑛𝑔 𝐶 − 𝑅 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠



ℛ

𝑪𝟏

𝑪𝟐

Cauchy’s Theorem. The Cauchy–Goursat Theorem (page 129)
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Q. Prove the Cauchy–Goursat theorem for multiply-connected regions.

We shall present a proof for the multiply-connected region 𝑅 bounded by the simple closed curves 𝐶1 and 𝐶2 as indicated in 

Fig. 

Proof:

𝐴

𝐵𝐷

𝐸

𝐹
𝐺

𝐻

𝐼

𝐽

Construct cross-cut AH. Then the region bounded by

ABDEFGAHIJHA is simply-connected, So

 

ABDEFGAHIJHA

𝑓 𝑧 𝑑𝑧 = 0

⇒  

ABDEFGA

𝑓 𝑧 𝑑𝑧 +  

AH

𝑓 𝑧 𝑑𝑧 +  

HIJH

𝑓 𝑧 𝑑𝑧 +  

HA

𝑓 𝑧 𝑑𝑧 = 0

⇒  

ABDEFGA

𝑓 𝑧 𝑑𝑧 +  

HIJH

𝑓 𝑧 𝑑𝑧 = 0

⇒  

C

𝑓 𝑧 𝑑𝑧 = 0

where C is the complete boundary of 𝑅 (consisting of ABDEFGA and HIJH)

traversed in the sense that an observer walking on the boundary always has the

region R on his/her left.
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Note:

ℛ

𝑪𝟏

𝑪𝟐 𝐴

𝐵𝐷

𝐸

𝐹 𝐺

𝐻

𝐼

𝐽

 

ABDEFGA

𝑓 𝑧 𝑑𝑧 +  

HIJH

𝑓 𝑧 𝑑𝑧 = 0

Since,

⟹  

𝑪𝟏

𝑓 𝑧 𝑑𝑧 +  

𝐶2

𝑓 𝑧 𝑑𝑧 = 0

⟹  

𝑪𝟏

𝑓 𝑧 𝑑𝑧 = −  

𝐶2

𝑓 𝑧 𝑑𝑧

ℛ

𝑪𝟏

𝑪𝟐 𝐴

𝐵𝐷

𝐸

𝐹 𝐺

𝐻

𝐼

𝐽

 

𝑪𝟏

𝑓 𝑧 𝑑𝑧 =  

𝐶2

𝑓 𝑧 𝑑𝑧

Now, if we take the integration on contour 𝑪𝟏 as positive sense

and on the contour 𝑪𝟐 as negative sense as shown in figure, then

ℛ

𝑪𝟏

𝑪𝟐

𝑪𝟑

𝑪𝟒

Outer contour integration = Inner contour integration

Similarly,

 𝑪𝟏
𝑓 𝑧 𝑑𝑧 =  𝐶2

𝑓 𝑧 𝑑𝑧 +  𝐶3
𝑓 𝑧 𝑑𝑧+ 𝐶4

𝑓 𝑧 𝑑𝑧
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Q. Evaluate  𝐶
𝑑𝑧

𝑧−𝑎
where C is any simple closed curve C and 𝑧 = 𝑎 𝑜𝑟 𝑧 = 𝑧0 is (a) outside C and (b) inside C.

𝑪

ℛ

Γ
𝜖

𝑎

Solution:

(a) If 𝑧 = 𝑎 is outside C, then 𝑓 𝑧 =
1

𝑧−𝑎
is analytic everywhere inside and on 

C. 

Here, the given function 𝑓 𝑧 =
1

𝑧−𝑎
has a singularity at 𝑧 = 𝑎, so the function is blows up at this point and 

hence it is not analytic at 𝑧 = 𝑎.

Hence, by Cauchy’s theorem  

𝐶

𝑑𝑧

𝑧 − 𝑎
= 0

𝑪

ℛ

Γ
𝜖

𝑧 = 𝑎

(b) Suppose 𝑧 = 𝑎 is inside C and let Γ be a circle of radius 𝜖 with center at 𝑧 = 𝑎 so

that Γ is inside C.

We can write

Now, on Γ

𝑧 − 𝑎 = ϵ

⇒ 𝑧 − 𝑎 = ϵ 𝑒𝑖𝜃

⇒ 𝑧 − 𝑎 = ϵ𝑒𝑖𝜃

Equation of the circle

Since, 𝑒𝑖𝜃 =1

 

𝐶

𝑑𝑧

𝑧 − 𝑎
=  

Γ

𝑑𝑧

𝑧 − 𝑎
-----------(1)

Thus, since 𝑑𝑧 = 𝑖𝜖𝑒𝑖𝜃𝑑𝜃, the right side of 

(1) becomes

 

𝐶

𝑑𝑧

𝑧 − 𝑎
=  

0

2𝜋
𝑖𝜖𝑒𝑖𝜃𝑑𝜃

ϵ𝑒𝑖𝜃

Here, 0 ≤ 𝜃 < 2𝜋

=  

0

2𝜋

𝑖𝑑𝜃

= 𝑖2𝜋 𝑜𝑟 2𝜋i

This is the required contour integration value.



Integration of real fn using CRT07-09-2021

Cauchy’s Integral Formula



𝐂

2. Cauchy’s Integral formula (page 144)
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 Let f (z) be analytic inside and on a simple closed curve C and let a be any point inside C. Then 

𝑓 𝑎 =
1

2𝜋𝑖
 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)
𝑑𝑧

where C is traversed in the positive (counterclockwise) sense.

Statement (Cauchy’s integral formula)

Also, the nth derivative of 𝑓 (𝑧) at 𝑧 = 𝑎 is given by

𝑓𝑛 𝑎 =
𝑛!

2𝜋𝑖
 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧 Where, n = 1, 2, 3, 4, 5, …

When, n = 0 we get

(This is a special case)

𝒙

𝒚

𝑎 or 𝑧0

If a function of a complex variable has a first derivative, i.e., is analytic, in a simply-connected region

R, all its higher derivatives exist in R. This is not necessarily true for functions of real variables.

Q. What is the significant of this formula? Or Why it is so important?

Forward   :

Backward :

 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧 = 𝑓𝑛 𝑎 ×

2𝜋𝑖

𝑛!

If a function 𝑓(𝑧) is analytic in a simple closed curve C, then we can find the integration of a function

𝐺(𝑧) such that 𝐺 𝑧 = . The required integration will be
𝑓(𝑧)

(𝑧 − 𝑎)



2. Cauchy’s Integral formula (page 144)
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Q. Evaluate  𝐶
1

𝑧−𝑎
𝑑𝑧 where C is any simple closed curve C and 𝑧 = 𝑎 𝑜𝑟 𝑧 = 𝑧0 is (a) outside C and (b) inside C.

 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧 = 𝑓𝑛 𝑎 ×

2𝜋𝑖

𝑛!

Solution: (b) We know that 

The given integration  𝐶
𝑑𝑧

(𝑧−𝑎)0+1
. 

Now by comparing with Cauchy’s integral formula

𝑓 𝑧 = 1

𝑛 = 0

So, the required integration

 

𝐶

𝑑𝑧

𝑧 − 𝑎
= 1 ×

2𝜋𝑖

0!

= 2𝜋𝑖

When you become expert in this course

Using Cauchy integral formula

 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)0+1
𝑑𝑧 = 1 ×

2𝜋𝑖

0!

⇒  
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)
𝑑𝑧 = 2𝜋𝑖

This is the required integration.
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Q. Evaluate  𝐶
𝑒2𝑧

(𝑧+1)4
dz where C is the circle 𝑧 = 3.

𝒙

𝒚
𝑧 = 3

ℛ

𝐶

𝒂 = −𝟏
 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧 = 𝑓𝑛 𝑎 ×

2𝜋𝑖

𝑛!

Solution: Since, Cauchy’s integral formula 

By comparing the given integration with Cauchy’s integral formula

 

𝐶

𝑒2𝑧

(𝑧 + 1)3+1
𝑑𝑧 = 𝑓3 −1 ×

2𝜋𝑖

3!

Now,

𝑓 𝑧 = 𝑒2𝑧

⇒ 𝑓/ 𝑧 = 2 × 𝑒2𝑧

⇒ 𝑓// 𝑧 = 4 × 𝑒2𝑧

⇒ 𝑓/// 𝑧 = 8 × 𝑒2𝑧

⇒ 𝑓/// −1 = 8 × 𝑒−2

−−−−−−−− −(𝑖)

The required integration from equation (i)

 

𝐶

𝑒2𝑧

(𝑧 + 1)3+1
𝑑𝑧 = 8 × 𝑒−2 ×

2𝜋𝑖

3!

= 8 × 𝑒−2 ×
2𝜋𝑖

3 × 2

=
8 𝜋𝑖

3 𝑒2

If the point ‘𝒂’ is outside

the region then we can

directly used Cauchy’s

theorem and will get the

results as ‘𝟎’ i.e

 

𝐶

𝑒2𝑧

(𝑧 + 1)4
𝑑𝑧 = 0
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Q. Evaluate  𝐶
(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧−1)(𝑧−2)
𝑑𝑧 where C is the circle (a) 𝒛 = 𝟑 and (b) 𝒛 =2.

Solution:

1

(𝑧 − 1)(𝑧 − 2)
=

𝐴

(𝑧 − 1)
+

𝐵

(𝑧 − 2)

Since,

1

(𝑧 − 1)(𝑧 − 2)
=
𝐴 (𝑧 − 2) + 𝐵(𝑧 − 1)

(𝑧 − 1)(𝑧 − 2)

1 = 𝐴 (𝑧 − 2) + 𝐵(𝑧 − 1)

When, 𝑧 = 2, we get

1 = 𝐵(2 − 1)

⇒ 𝐵 = 1

When, 𝑧 = 1, we get

1 = 𝐴(1 − 2)

⇒ 𝐴 = −1

Now,

1

(𝑧 − 1)(𝑧 − 2)
=

(−1)

(𝑧 − 1)
+

1

(𝑧 − 2)

1

(𝑧 − 1)(𝑧 − 2)
=

1

(𝑧 − 2)
−

1

(𝑧 − 1)

So the given integration becomes,

 

𝐶

(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧 − 1)(𝑧 − 2)
𝑑𝑧 =  

𝐶

(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧 − 2)
𝑑𝑧 −  

𝐶

(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧 − 1)
𝑑𝑧

Since 𝑧 = 1 and 𝑧 = 2 are inside or on C and (𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2 is analytic 

inside C.

𝒙

𝒚

𝑧 = 3

ℛ

𝐶

𝒛 = 𝟏

𝒛 =2

𝒙

𝒚

𝑧 = 2

ℛ

𝐶

𝒛 = 𝟏

𝒛 =2
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By Cauchy’s integral formula

 

𝐶

(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧 − 1)(𝑧 − 2)
𝑑𝑧 = 2𝜋𝑖 sin 𝜋2 2 + cos 𝜋2 2 − 2𝜋𝑖 [(sin 𝜋 )2+cos 𝜋 2]

 

𝐶

(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧 − 1)(𝑧 − 2)
𝑑𝑧 = 2𝜋𝑖 − 2𝜋𝑖 −1

This is the required integration.

 

𝐶

(𝑠𝑖𝑛𝜋𝑧2+𝑐𝑜𝑠𝜋𝑧2)

(𝑧 − 1)(𝑧 − 2)
𝑑𝑧 = 4𝜋𝑖
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Q. Let 𝑓 (𝑧) be analytic inside and on the boundary C of a simply-connected region R. Prove Cauchy’s integral formula

2. Cauchy’s Integral formula (page 146)

𝑓 𝑎 =
1

2𝜋𝑖
 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)
𝑑𝑧

where C is traversed in the positive (counterclockwise) sense.

The function 
𝑓(𝑧)

(𝑧−𝑎)
is analytic inside and on C except 

at the point 𝑧 = 𝑎 . Now we can write, 

Solution:

 

𝐶

𝑓 𝑧 𝑑𝑧

𝑧 − 𝑎
=  

Γ

𝑓 𝑧 𝑑𝑧

𝑧 − 𝑎
-----------(1)

𝒙

𝒚
𝑪

ℛ

Γ
𝜖

𝑎

Now, on Γ

𝑧 − 𝑎 = ϵ

⇒ 𝑧 − 𝑎 = ϵ 𝑒𝑖𝜃

⇒ 𝑧 − 𝑎 = ϵ𝑒𝑖𝜃

Equation of the circle

Since, 𝑒𝑖𝜃 =1

Here, 0 ≤ 𝜃 < 2𝜋

Thus, since 𝑑𝑧 = 𝑖𝜖𝑒𝑖𝜃𝑑𝜃, the right hand side of 

equation (1) becomes

 

𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
=  

0

2𝜋
𝑓(𝑎 + ϵ𝑒𝑖𝜃)𝑖𝜖𝑒𝑖𝜃𝑑𝜃

ϵ𝑒𝑖𝜃

= 𝑖 

0

2𝜋

𝑓(𝑎 + ϵ𝑒𝑖𝜃) 𝑑𝜃 -----------(2)

Taking the limit of both sides of (2) and making use of the continuity 

of f (z), we have

lim
𝜖→0

 
𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
= lim

𝜖→0
𝑖  

0

2𝜋

𝑓(𝑎 + ϵ𝑒𝑖𝜃) 𝑑𝜃

 
𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
= 𝑖  

0

2𝜋

lim
𝜖→0

𝑓(𝑎 + ϵ𝑒𝑖𝜃) 𝑑𝜃

𝑂𝑟 𝑓𝑛 𝑎 =
𝑛!

2𝜋𝑖
 
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1
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2. Cauchy’s Integral formula (page 146)

 
𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
= 𝑖  

0

2𝜋

lim
𝜖→0

𝑓(𝑎 + ϵ𝑒𝑖𝜃) 𝑑𝜃

= 𝑖  

0

2𝜋

𝑓(𝑎) 𝑑𝜃

= 2𝜋𝑖𝑓(𝑎)

so that we have

This is the required Cauchy’s integral formula

𝑓 𝑎 =
1

2𝜋𝑖
 
𝐶

𝑓(𝑧)𝑑𝑧

𝑧 − 𝑎
-----------(3)

Now, differentiating eq. (3) w.r.t 𝒂, we will get

𝑓/ 𝑎 =
1

2𝜋𝑖
 
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)2

Again, differentiating eq. (3) w.r.t a twice, we will get

𝑓// 𝑎 =
2!

2𝜋𝑖
 
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)3

Hence after differentiation eq. (3) 𝒏 number of times we will get

𝑓𝑛 𝑎 =
𝑛!

2𝜋𝑖
 
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑎)𝑛+1

This is the general form of Cauchy’s integral formula.
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Q. Evaluate  𝐶
𝑒𝑧(𝑧2+1)

(𝑧−1)2
𝑑𝑧 where C is the circle (a) 𝒛 =2.

𝒙

𝒚
𝑧 =2

ℛ

𝐶
𝒛𝟎 = 𝟏

 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
𝑑𝑧 = 𝑓𝑛 𝑎 ×

2𝜋𝑖

𝑛!

Solution: Since, Cauchy’s integral formula 

By comparing the given integration with Cauchy’s integral formula

 

𝐶

𝑒𝑧(𝑧2 + 1)

(𝑧 − 1)1+1
𝑑𝑧 = 𝑓1 1 ×

2𝜋𝑖

1!

Now,

𝑓 𝑧 = 𝑒𝑧(𝑧2 + 1)

⇒ 𝑓/ 𝑧 = 𝑒𝑧 2z + 𝑒𝑧(𝑧2 + 1)

−−−−−−−− −(𝑖)

The required integration from equation (𝑖)

 

𝐶

𝑒𝑧(𝑧2 + 1)

(𝑧 − 1)1+1
𝑑𝑧 = 4𝑒 ×

2𝜋𝑖

1!

= 8𝜋𝑖𝑒

If the integration is

 𝐶
𝑒𝑧(𝑧2+1)

(𝑧−3)2
𝑑𝑧 then the

point ‘𝒂’ 𝒐𝒓 𝒛𝟎 is outside

the region. So, we can

directly used Cauchy’s

theorem and will get the

results as ‘𝟎’ i.e

 

𝐶

𝑒𝑧(𝑧2 + 1)

(𝑧 − 1)2
𝑑𝑧 = 0

⇒ 𝑓/ 1 = 𝑒1 2 + 𝑒1(12 + 1)

= 4𝑒
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2. Cauchy’s Integral formula (page 150) (not important)

Q. Prove Cauchy’s integral formula for multiply-connected regions.

𝒙

𝒚
𝑪𝟏

ℛ
Γ 𝑪𝟐. 𝑎
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Q. Evaluate  𝐶
(𝑧−1)

(𝑧2+1)
𝑑𝑧 where C is the circle (a) 𝒛 − 𝒊 =1 and (b) 𝒛 =2. (2017, 2+2=4)

Solution:

𝑧 − 1)

(𝑧2 + 1)
=

(𝑧 − 1)

(𝑧 + 𝑖)(𝑧 − 𝑖)

Since,

𝒙

𝒚

𝑧 = 2

ℛ

𝐶

𝒛 = −𝒊

𝒛 = 𝒊

=
1

2𝑖

𝑧 − 1

𝑧 − 𝑖
−

𝑧 − 1

𝑧 + 𝑖

So the given integration becomes,

 

𝐶

𝑧 − 1)

(𝑧2 + 1)
𝑑𝑧 =

1

2𝑖
 
𝐶

𝑧 − 1

𝑧 − 𝑖
𝑑𝑧 −  

𝐶

𝑧 − 1

𝑧 + 𝑖
𝑑𝑧

(b) When the region is 𝑧 =2, it is found that both the

singular point 𝑧 = −𝑖 and 𝑧 = 𝑖 is inside the region, therefore

𝒙

𝒚 𝑧 − 𝑖 = 1

ℛ
𝐶

𝒛 = 𝒊

𝒛 = −𝒊

 

𝐶

𝑧 − 1)

(𝑧2 + 1)
𝑑𝑧 =

1

2𝑖
 
𝐶

𝑧 − 1

𝑧 − 𝑖
𝑑𝑧 − 0

=
1

2𝑖
2𝜋𝑖 × 𝑓(𝑖) = 𝜋(𝑖 − 1)

𝐻𝑒𝑟𝑒, 𝑓 𝑧 = 𝑧 − 1

(a) When the region is 𝑧 − 𝑖 =1, it is found that the singular 

point 𝑧 = −𝑖 is out the region, therefore

 

𝐶

𝑧 − 1)

(𝑧2 + 1)
𝑑𝑧 =

1

2𝑖
 
𝐶

𝑧 − 1

𝑧 − 𝑖
𝑑𝑧 − − 

𝐶

𝑧 − 1

𝑧 + 𝑖
𝑑𝑧

=
1

2𝑖
2𝜋𝑖(𝑖 − 1) − 2𝜋𝑖(−𝑖 − 1)

= 2π𝑖
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Q. Evaluate  𝐶
1

𝑧
𝑑𝑧 where C is the circle of unit radius. (2017, 2)

Solution: Using Cauchy integral formula

 
𝐶

1

(𝑧 − 0)0+1
𝑑𝑧 = 1 ×

2𝜋𝑖

0!

⇒  
𝐶

1

𝑧
𝑑𝑧 = 2𝜋𝑖

This is the required integration.

Homework



Integration of real fn using CRT07-09-2021

Residue theorem
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5. Residues and Residue Theorem (page no. 162)

Q. (a) Let F(z) be analytic inside and on a simple closed curve C except for a pole of order m at 𝑧 = 𝑎 inside C. Prove 

that

𝒙

𝒚
𝑪

ℛ
Γ
. 𝑎

1

2𝜋𝑖
 
𝐶

𝐹(𝑧) 𝑑𝑧 = lim
𝑧→𝑎

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑧𝑚−1 { 𝑧 − 𝑎 𝑚𝐹(𝑧)}

(b) How would you modify the result in (a) if more than one pole were inside C?

If 𝐹(𝑧) has a pole of order 𝑚 at 𝑧 = 𝑎, then 𝑭 𝒛 =  𝒇(𝒛) (𝒛 − 𝒂)𝒎 where 

𝑓(𝑧) is analytic inside and on C, and 𝑓(𝑎) ≠ 0. Then, by Cauchy’s integral 

formula,

Solution: (a)

Not analytic

Analytic

1

2𝜋𝑖
 
𝐶

𝐹(𝑧) 𝑑𝑧 =
1

2𝜋𝑖
 
𝐶

𝑓(𝑧)

(𝑧 − 𝑎)𝑚
𝑑𝑧

=
𝑓 𝑚−1 (𝑎)

𝑚 − 1 !

= lim
𝑧→𝑎

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑧𝑚−1 {𝑓(𝑧)}

= lim
𝑧→𝑎

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑧𝑚−1
{ 𝑧 − 𝑎 𝑚𝐹(𝑧)}

Here, 𝑅 is called the residues of 𝐹(𝑧) at 

the poles 𝑧 = 𝑎.

= 𝑅
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5. Residues and Residue Theorem (page no. 162)

Q. Evaluate  𝐶
𝑒𝑧(𝑧2+1)

(𝑧−1)2
𝑑𝑧 where C is the circle (a) 𝒛 =2.

𝒙

𝒚
𝑧 =2

ℛ

𝐶
𝒛 = 𝟏

Solution:

Now, from Cauchy’s integral formula

= 8𝜋𝑖𝑒

= lim
𝑧→𝑎

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑧𝑚−1 { 𝑧 − 𝑎 𝑚𝐹(𝑧)}
1

2𝜋𝑖
 
𝐶

𝐹(𝑧) 𝑑𝑧

⇒  
𝐶

𝐹(𝑧) 𝑑𝑧 = 2𝜋𝑖 × lim
𝑧→𝑎

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑧𝑚−1 { 𝑧 − 𝑎 𝑚𝐹(𝑧)}

⇒  
𝐶

𝑒𝑧(𝑧2 + 1)

(𝑧 − 1)2
𝑑𝑧 = 2𝜋𝑖 × lim

𝑧→1

1

2 − 1 !

𝑑2−1

𝑑𝑧2−1
{ 𝑧 − 1 2

𝑒𝑧 𝑧2 + 1

𝑧 − 1 2 }

= 2𝜋𝑖 × lim
𝑧→1

𝑑

𝑑𝑧
{𝑒𝑧 𝑧2 + 1 }

= 2𝜋𝑖 × lim
𝑧→1

{𝑒𝑧 2z + 𝑒𝑧(𝑧2 + 1)}

= 2𝜋𝑖 × {𝑒1 2 + 𝑒1(12 + 1)}

Here, the pole 𝑧 = 1 or 𝑎 = 1 is inside the given region and the pole is order 2 i.e. 𝑚 = 2.
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5. Residues and Residue Theorem (page no. 162)

(b) Suppose there are two poles at 𝑧 = 𝑎1 and 𝑧 = 𝑎2 inside C, of orders 𝑚1𝑎𝑛𝑑 𝑚2, respectively. Let Γ1 and

Γ2 be circles inside C having radii 𝜖1 and 𝜖2 and centers at 𝑎1 and 𝑎2, respectively. Then

𝒙

𝒚
𝑪𝟏

ℛ
Γ1 Γ2. 𝑎1 . 𝑎2

If 𝐹(𝑧) has a pole of order 𝑚1 at 𝑧 = 𝑎1, then

𝐹 𝑧 =
𝑓1(𝑧)

(𝑧 − 𝑎1)
𝑚1

where 𝑓1(𝑧) is analytic and 𝑓1(𝑧) ≠ 0

If 𝐹(𝑧) has a pole of order 𝑚2 at 𝑧 = 𝑎2, then

𝐹 𝑧 =
𝑓2(𝑧)

(𝑧 − 𝑎2)
𝑚2

where 𝑓2(𝑧) is analytic and 𝑓2(𝑧) ≠ 0

1

2𝜋𝑖
 
𝐶

𝐹(𝑧) 𝑑𝑧 =
1

2𝜋𝑖
 
Γ1

𝐹(𝑧) 𝑑𝑧 +
1

2𝜋𝑖
 
Γ2

𝐹(𝑧) 𝑑𝑧 −−−−−−−− −(𝑖)

So from equation (i)

1

2𝜋𝑖
 
𝐶

𝐹(𝑧) 𝑑𝑧 =
1

2𝜋𝑖
 
Γ1

𝑓1(𝑧)

(𝑧 − 𝑎1)
𝑚1

𝑑𝑧 +
1

2𝜋𝑖
 
Γ2

𝑓2(𝑧)

(𝑧 − 𝑎2)
𝑚2

𝑑𝑧

= lim
𝑧→𝑎1

1

𝑚1 − 1 !

𝑑𝑚1−1

𝑑𝑧𝑚1−1
𝑧 − 𝑎1

𝑚1𝐹 𝑧 + lim
𝑧→𝑎2

1

𝑚2 − 1 !

𝑑𝑚2−1

𝑑𝑧𝑚2−1
{ 𝑧 − 𝑎1

𝑚2𝐹(𝑧)}

= 𝑅1 + 𝑅2
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5. Residues and Residue Theorem (page no. 162)

So we can write 

 
𝐶

𝐹(𝑧) 𝑑𝑧 = 2𝜋𝑖(𝑅1+𝑅2)

where 𝑅1𝑎𝑛𝑑 𝑅2are called the residues of 𝐹(𝑧) at the poles 𝑧 = 𝑎1 and 𝑧 = 𝑎2.

In general, if 𝐹(𝑧) has a number of poles inside C with residues 𝑅1, 𝑅2, . . ., then

 
𝐶

𝐹(𝑧) 𝑑𝑧 = 2𝜋𝑖(𝑅1+𝑅2 +⋯)

= 2𝜋𝑖 (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠)

This result is called the residue theorem.
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6. Residues and Residue Theorem (page no. 162)

Q. Evaluate  𝐶
𝑒𝑧

(𝑧2+𝜋2)2
𝑑𝑧 where C is the circle (a) 𝒛 =4.

𝒙

𝒚
𝑧 =4

ℛ

𝐶
𝒛 = 𝒊𝝅

Solution:

Therefore

The poles of

𝑒𝑧

(𝑧2 + 𝜋2)2
=

𝑒𝑧

(𝑧 + 𝑖𝜋)2(𝑧 − 𝑖𝜋)2

are at 𝑧 = ±𝑖𝜋 inside C and are both of order two i.e. 𝑚 = 2. 

Now, residue at 𝑧 = 𝑖𝜋 is 

lim
𝑧→𝑖𝜋

1

1!

𝑑

𝑑𝑧
𝑧 − 𝑖𝜋 2

𝑒𝑧

(𝑧 + 𝑖𝜋)2(𝑧 − 𝑖𝜋)2
=
𝜋 + 𝑖

4𝜋3

Similarly, residue at 𝑧 = −𝑖𝜋 is 

lim
𝑧→−𝑖𝜋

1

1!

𝑑

𝑑𝑧
𝑧 + 𝑖𝜋 2

𝑒𝑧

(𝑧 + 𝑖𝜋)2(𝑧 − 𝑖𝜋)2
=
𝜋 − 𝑖

4𝜋3

 

𝐶

𝑒𝑧

(𝑧2 + 𝜋2)2
𝑑𝑧 = 2𝜋𝑖 (𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠) = 2𝜋𝑖

𝜋 + 𝑖

4𝜋3
+
𝜋 − 𝑖

4𝜋3
=

𝑖

𝜋

𝒛 = −𝒊𝝅
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6. Residues and Residue Theorem (page no. 162)

Q. Obtain the residue of the following

1.  f z =
1

𝑧2+𝑎2
where 𝑎 > 0 2018, marks: 4

2.  f z =
𝑒𝑖𝑧

𝑧2+𝑎2
at 𝑧 = 𝑖𝑎 2017, marks: 2

3.  f z =
𝑒𝑧

(𝑧−𝑖)2
at 𝑖𝑡𝑠 𝑝𝑜𝑙𝑒 2015, marks: 2

4.  f z =
𝑒𝑧

(𝑧−2)3
at 𝑖𝑡𝑠 𝑝𝑜𝑙𝑒 2013, marks: 2

Q. For a function 𝑓(𝑧) which has a pole of order 𝑚 at 𝑧 = 𝑧0, show that the residue of the function at that singular point is 

𝑎−1 = lim
𝑧→𝑎

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑧𝑚−1 { 𝑧 − 𝑎 𝑚𝐹(𝑧)}
2013, 2015, marks: 5

Note: Here, since marks is 5, so it is recommended that you should start from Cauchy’s integral formula.

4.  f z =
𝑧2

(1+𝑧2)3
at 𝑖𝑡𝑠 𝑝𝑜𝑙𝑒 2020, marks: 3

No need to submit. Just do it yourself as 

practice.
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Power series (only for concept) 

Power Series:
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 In mathematics, a power series (in one variable) is an infinite series of the form

where 𝑎𝑛 represents the coefficient of the 𝑛𝑡ℎ term and 𝑎 is a constant.

 

𝑛=0

∞

𝑎𝑛(𝑥 − 𝑎)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑎)1+𝑎2(𝑥 − 𝑎)2+⋯ −−−−−−−− −(1)

 In many situations 𝑎 (the center of the series) is equal to zero, for instance when considering a Maclaurin 

series. In such cases, the power series takes the simpler form

 

𝑛=0

∞

𝑎𝑛(𝑥)
𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯
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Taylor’s theorem (only for concept) 

If 𝑓 (𝑥) is differentiable in region, then 𝑓(𝑥) can be expand around a given point 𝒂 as

Taylor’s theorem:

𝑓 𝑥 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑥 − 𝑎 +
𝑓//(𝑎)

2!
(𝑥 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑥 − 𝑎)3+⋯

=  

𝑛=0

∞
𝑓𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

=  

𝑛=0

∞

𝑎𝑛 (𝑥 − 𝑎)𝑛

This is also called as power series.
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Any polynomial can be easily expressed as a power series around any center 𝑎. 

For example 𝒇 𝒙 = 𝒙𝟐 + 𝟐𝒙 + 𝟑 can be written as a

Example:

𝑓 𝑥 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑥 − 𝑎 +
𝑓//(𝑎)

2!
(𝑥 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑥 − 𝑎)3+⋯ 𝑓(0) = 3

𝑓1(0) = (2𝑥 + 2 )𝑎=0= 2

𝑓//(0)

2!
=
(2)𝑎=0

2
= 1= 3 + 2𝑥 + 𝑥2 + 0 + 0 +⋯

= 𝟑 + 𝟐𝒙 + 𝒙𝟐

(a) power series around 𝐭𝐡𝐞 𝐜𝐞𝐧𝐭𝐞𝐫 𝒂 = 𝟎 as

(b) power series around 𝐭𝐡𝐞 𝐜𝐞𝐧𝐭𝐞𝐫 𝒂 =1 as

𝑓 𝑥 = 𝑓 1 + 𝑓/(1) 𝑥 − 1 +
𝑓//(1)

2!
(𝑥 − 1)2+⋯

= 𝑓 0 + 𝑓/ 0 𝑥 +
𝑓//(0)

2!
𝑥2 +

𝑓///(0)

3!
𝑥3 +⋯

𝑓(1) = 6

𝑓/ 1 = 4

𝑓//(1)

2!
= 1

= 6 + 4 𝑥 − 1 + (𝑥 − 1)2+0 + 0

= 6 + 4𝑥 − 4 + 𝑥2 − 2𝑥 + 1

= 𝟑 + 𝟐𝒙 + 𝒙𝟐
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Taylor’s theorem (only for concept) 



4. Laurent and Taylors expansion (only for concept) 

 Let represent the exponential function 𝑓(𝑥) = 𝑒𝑥 by the infinite polynomial (power series).

𝑓/(𝑥) = 𝑓//(𝑥) = 𝑓///(𝑥) = 𝑒𝑥

 Since, here

and

𝑓/(0) = 𝑓//(0) = 𝑓///(0) = 𝑒0 = 1

Now, the function can be represented as a power series 

using the Maclaurin's formula with 𝑎𝑛 =
𝑓𝑛(𝑎)

𝑛!
=

1

𝑛!

𝑒𝑥 =  

𝑛=0

∞
𝑥𝑛

𝑛!
= 1 +

𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+ ⋯+

𝑥𝑛

𝑛!
+ ⋯

𝑓0(𝑥)

𝑓1(𝑥)

𝑓2(𝑥)

𝑓3(𝑥)

𝑓0 𝑥 = 1
1

−1

𝑓1 𝑥

𝑓2 𝑥

𝑓3 𝑥

𝑓4 𝑥

𝑓(𝑥) = 𝑒𝑥

series 

Sequence’s term
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4. Taylors expansion 

If 𝑓 (𝑧) is analytic inside a circle 𝐶 with center at 𝑎, then for all 𝑧 inside 𝐶

Taylor’s theorem:
𝐶

𝑎𝑓 𝑧 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑧 − 𝑎 +
𝑓//(𝑎)

2!
(𝑧 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑧 − 𝑎)3+⋯

𝑇ℎ𝑖𝑠 𝑖𝑠 𝑎 𝑝𝑜𝑤𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠

=  

𝑛=0

∞
𝑓𝑛(𝑎)

𝑛!
(𝑧 − 𝑎)𝑛

=  

𝑛=0

∞

𝑎𝑛 (𝑧 − 𝑎)𝑛

This is called Taylor’s theorem and the series is called a Taylor series or expansion for 𝑓 (𝑧).

 The region of convergence of the series is given by 𝑧 − 𝑎 < 𝑅, where the radius of convergence 𝑅 is the

distance from 𝒂 to the nearest singularity of the function 𝑓 (𝑧). On 𝑧 − 𝑎 = 𝑅, the series may or may not

converge. For 𝑧 − 𝑎 > 𝑅, the series diverges.

 If the nearest singularity of 𝑓 (𝑧) is at infinity, the radius of convergence is infinite, i.e., the series

converges for all z.

 If 𝑎 = 0 in Taylor series, the resulting series is often called a Maclaurin series.
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4. Taylors expansion 

Some special series:

07-09-2021 DJG 86

The following list shows some special series together with their regions of convergence

1. 𝑒𝑧 = 1 + 𝑧 +
𝑧2

2!
+
𝑧3

3!
+ ⋯ 𝑧 < ∞

2. sin 𝑧 = 𝑧 −
𝑧3

3!
+
𝑧5

5!
+ ⋯ 𝑧 < ∞

3. cos 𝑧 = 1 −
𝑧2

2!
+
𝑧4

4!
+ ⋯ 𝑧 < ∞

4. 𝑙𝑛(1 + 𝑧) = 𝑧 −
𝑧2

2
+
𝑧3

3
+ ⋯ 𝑧 < 1

5. (1 + 𝑧)𝑝= 1 + 𝑝𝑧 +
𝑝(𝑝 − 1)

2!
𝑧2 +⋯ 𝑧 < 1


1

1−𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 +⋯ 𝑧 < 1



4. Taylors expansion (page number 184) 

Taylor’s theorem Proof: Let 𝒛 be any point inside 𝑪. Construct a circle 𝑪𝟏 with center at 𝒂 and enclosing 𝒛.

Then, by Cauchy’s integral formula,

𝐶

𝐶1 𝑧

𝑓 𝑧 =
1

2𝜋𝑖
 
𝐶1

𝑓(𝑤)

(𝑤 − 𝑧)
𝑑𝑤 −−−−−− −(1)

We have

1

(𝑤 − 𝑧)
=

1

𝑤 − 𝑎 − (𝑧 − 𝑎)
=

1

𝑤 − 𝑎

1

1 −  
(𝑧 − 𝑎)

(𝑤 − 𝑎)

=
1

𝑤 − 𝑎
1 +

𝑧 − 𝑎

𝑤 − 𝑎
+

𝑧 − 𝑎

𝑤 − 𝑎

2

+⋯+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛−1

+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛

+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛+1

+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛+2

+⋯

=
1

𝑤 − 𝑎
1 +

𝑧 − 𝑎

𝑤 − 𝑎
+

𝑧 − 𝑎

𝑤 − 𝑎

2

+⋯+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛−1

+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛

[1 +
𝑧 − 𝑎

𝑤 − 𝑎

1

+
𝑧 − 𝑎

𝑤 − 𝑎

2

+⋯]

=
1

𝑤 − 𝑎
1 +

𝑧 − 𝑎

𝑤 − 𝑎
+

𝑧 − 𝑎

𝑤 − 𝑎

2

+⋯+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛−1

+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛 1

1 −  𝑧 − 𝑎
𝑤 − 𝑎

=
1

𝑤 − 𝑎
1 +

𝑧 − 𝑎

𝑤 − 𝑎
+

𝑧 − 𝑎

𝑤 − 𝑎

2

+⋯+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛−1

+
𝑧 − 𝑎

𝑤 − 𝑎

𝑛 (𝑤 − 𝑎)

(𝑤 − 𝑧)

𝑓𝑛(𝑧) =
𝑛!

2𝜋𝑖
 
𝐶1

𝑓(𝑤)

(𝑤 − 𝑧)𝑛+1
𝑑𝑤 −−−−−− −(2)

𝑎
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4. Taylors expansion 

Now, multiplying both side of equation (3) by 𝑓(𝑤)/2𝜋𝑖 and taking contour integration, thereafter using equation 

(1) we get

𝑓 𝑧 =
1

2𝜋𝑖
 
𝐶1

𝑓(𝑤)

(𝑤 − 𝑎)
𝑑𝑤 +

(𝑧 − 𝑎)

2𝜋𝑖
 
𝐶1

𝑓(𝑤)

(𝑤 − 𝑎)2
𝑑𝑤 +⋯+

𝑧 − 𝑎 𝑛−1

2𝜋𝑖
 
𝐶1

𝑓 𝑤

𝑤 − 𝑎 𝑛 𝑑𝑤 + 𝑈𝑛

=
1

𝑤 − 𝑎
+

𝑧 − 𝑎

(𝑤 − 𝑎)2
+
(𝑧 − 𝑎)2

(𝑤 − 𝑎)3
+⋯+

(𝑧 − 𝑎)𝑛−1

(𝑤 − 𝑎)𝑛
+

𝑧 − 𝑎

𝑤 − 𝑎

𝑛 1

(𝑤 − 𝑧)
−−−−−− −(3)

Where

𝑈𝑛 =
1

2𝜋𝑖
 
𝐶1

𝑧 − 𝑎

𝑤 − 𝑎

𝑛 𝑓(𝑤)

(𝑤 − 𝑧)
𝑑𝑤

−−−−−− −(4)

Now, using equation (2), equation (4) becomes

If we can now show that lim
𝑛→∞

𝑈𝑛 = 0, we will have proved the required result. To do this, we note that since 𝑤 is 

on 𝐶1,

𝑓 𝑧 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑧 − 𝑎 +
𝑓//(𝑎)

2!
(𝑧 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑧 − 𝑎)3+⋯+

𝑓𝑛−1(𝑎)

(𝑛 − 1)!
(𝑧 − 𝑎)𝑛−1+𝑈𝑛 −−−−−− −(5)

𝑧 − 𝑎

𝑤 − 𝑎
= 𝛾 < 1

Where 𝛾 is a constant. DJG 88



4. Taylors expansion 

Also, we have 𝑓(𝑤) < 𝑀, where 𝑀 is a constant, and

𝑤 − 𝑧 = 𝑤 − 𝑎 − (𝑧 − 𝑎) ≥ 𝑟1 − 𝑧 − 𝑎

𝐶

𝐶1 𝑧

𝑎
𝑟1where 𝑟1 is the radius of 𝐶1. Now taking modulus of 𝑈𝑛 we have 

𝑈𝑛 =
1

2𝜋
 
𝐶1

𝑧 − 𝑎

𝑤 − 𝑎

𝑛 𝑓(𝑤)

(𝑤 − 𝑧)
𝑑𝑤

≤
1

2𝜋

𝑧 − 𝑎

𝑤 − 𝑎

𝑛 𝑓(𝑤)

(𝑤 − 𝑧)
 
𝐶1

𝑑𝑤  
𝐶

𝑓(𝑧)𝑑𝑧 ≤ 𝑀𝐿
where 𝑓(𝑧) ≤ 𝑀, i.e., M is 

an upper bound of 𝑓(𝑧) on 

C, and L is the length of C.

2 + (−3) ≤ 2 + −3

−1 ≤ 2 + 3

1 ≤ 5

𝑧1 + 𝑧2 ≤ 𝑧1 + 𝑧2

Or simply=
1

2𝜋

𝛾𝑛𝑀

𝑟1 − 𝑧 − 𝑎
2𝜋𝑟1

=
𝛾𝑛𝑀𝑟1

𝑟1 − 𝑧 − 𝑎

Now, taking the limit, lim
𝑛→∞

𝑈𝑛 = lim
𝑛→∞

𝛾𝑛𝑀𝑟1
𝑟1 − 𝑧 − 𝑎

= 0

So from equation (5)

𝑓 𝑧 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑥 − 𝑎 +
𝑓//(𝑎)

2!
(𝑥 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑥 − 𝑎)3+⋯+

𝑓𝑛−1(𝑎)

(𝑛 − 1)!
(𝑥 − 𝑎)𝑛−1 Hence proved

𝑤



Radius of convergence
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Power series

 

𝑛=0

∞

𝑎𝑛(𝑧−𝑧0)
𝑛 =  

𝑛=0

∞

𝑍𝑛

𝑧0

𝑧
𝑅

Circle of convergence

𝑧 −𝑧0 < 𝑅

The power series is convergence when the

reference point (𝑧0) about which we do the

expansion is such that

Here, the 𝑅 is called radius of convergence.

Now, using using ratio test,

𝐿 = lim
𝑛→∞

𝑍𝑛+1
𝑍𝑛

= lim
𝑛→∞

𝑎𝑛+1(𝑧−𝑧0)
𝑛+1

𝑎𝑛(𝑧−𝑧0)
𝑛

= lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

𝑧 −𝑧0

So according to ratio test the power series will

be convergence when

𝐿 = lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

𝑧 −𝑧0 < 1

= 𝑙 × 𝑅 < 1

∴ 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐑 =
𝟏

𝒍

Ratio test

Let lim
𝑛→∞

𝑈𝑛+1

𝑈𝑛
=𝐿 . Then  𝑈𝑛

converges if L<1 and diverges if L>1.

If L=1, the test fails.



4. Taylors expansion: Numerical 
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Q1. Let 𝑓 𝑧 = ln (1 + 𝑧), then (a) Expand 𝑓(𝑧) in a Taylor series about 𝑧 = 0.

(b) Determine the region of convergence for the series in (a).

(c) Expand ln  (1 + 𝑧) (1 − 𝑧) in a Taylor series about 𝑧 = 0.

𝑓 𝑧 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑧 − 𝑎 +
𝑓//(𝑎)

2!
(𝑧 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑧 − 𝑎)3+⋯

Solution: We know the Taylor expansion

(a) We need to expand 𝑓 (𝑧) in a Taylor series about 𝑧 = 0. So,

Now,

𝑓 𝑧 = ln (1 + 𝑧); 𝑓 0 = 0

𝑓/(𝑧) = 1/(1 + 𝑧); 𝑓/(0) = 1

𝑓// 𝑧 = −1/(1 + 𝑧)2; 𝑓// 0 = −1

𝑓/// 𝑧 = (−1)(−2)/(1 + 𝑧)3; 𝑓/// 0 = 2!

𝑓(𝑛+1) 𝑧 = (−1)𝑛 𝑛! /(1 + 𝑧)(𝑛+1); 𝑓(𝑛+1) 0 = (−1)𝑛

.

.

.

.

.

.

Now, from equation (1)

𝑓 𝑧 = 𝑓 0 + 𝑓/ 0 𝑧 +
𝑓//(0)

2!
𝑧2 +

𝑓///(0)

3!
𝑧3 +⋯ −−−−−− −(1)

𝑓 𝑧 = 𝑓 0 + 𝑓/ 0 𝑧 +
𝑓//(0)

2!
𝑧2 +

𝑓///(0)

3!
𝑧3 +⋯

= 0 + 𝑧 −
𝑧2

2
+
𝑧3

3
−
𝑧4

4
+⋯

= 𝑧 −
𝑧2

2
+
𝑧3

3
−
𝑧4

4
+ ⋯



4. Taylors expansion: Numerical 
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(b) The 𝑛𝑡ℎ term of the Taylor expansion is 𝑈𝑛 = (−1)𝑛−1𝑧𝑛/𝑛. Using using ratio test,

𝑓 𝑧 = ln (1 + 𝑧) = 𝑧 −
𝑧2

2
+
𝑧3

3
−
𝑧4

4
+⋯

lim
𝑛→∞

𝑈𝑛+1
𝑈𝑛

= lim
𝑛→∞

𝑛𝑧

𝑛 + 1
= lim

𝑛→∞

𝑧

𝑛 + 1
𝑛

= lim
𝑛→∞

𝑧

1 +
1
𝑛

= 𝑧
Ratio test

Let lim
𝑛→∞

𝑈𝑛+1

𝑈𝑛
=𝐿 . Then  𝑈𝑛

converges (absolutely) if L<1 and

diverges if L>1. If L=1, the test fails.and the series converges for 𝑧 < 1.

(c) From the result in (a) we have, on replacing 𝑧 by −𝑧,

ln (1 + 𝑧) = 𝑧 −
𝑧2

2
+
𝑧3

3
−
𝑧4

4
+ ⋯

ln (1 − 𝑧) = −𝑧 −
𝑧2

2
−
𝑧3

3
−
𝑧4

4
− ⋯

both series convergent for 𝑧 < 1. By subtraction, we have

ln (
1 + 𝑧

1 − 𝑧
) = 2 (𝑧 +

𝑧3

3
+
𝑧5

5
+ ⋯ =  

𝑛=0

∞
2 𝑧2𝑛+1

2𝑛 + 1

Which converges for 𝑧 < 1
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Q1. (a) Expand 𝑓 𝑧 = sin 𝑧 in a Taylor series about 𝑧 = 𝜋/4.

𝑓 𝑧 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑧 − 𝑎 +
𝑓//(𝑎)

2!
(𝑧 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑧 − 𝑎)3+⋯

Solution: We know the Taylor expansion

We need to expand 𝑓 (𝑧) in a Taylor series about 𝑧 = 𝜋/4. So,

Now,

𝑓 𝑧 = sin 𝑧 ; 𝑓 𝜋/4 = 2/2

𝑓/ 𝑧 = cos 𝑧 ; 𝑓 𝜋/4 = 2/2

𝑓// 𝑧 = −sin 𝑧 ; 𝑓 𝜋/4 = − 2/2

𝑓 𝜋/4 = − 2/2

Now, from equation (1)

sin 𝑧 =𝑓 𝜋/4 + 𝑓/(𝜋/4) 𝑧 − 𝜋/4 +
𝑓//(𝜋/4)

2!
(𝑧 − 𝜋/4)2+⋯

=
2

2
+

2

2
𝑧 −

𝜋

4
−

2

2 .2!
𝑧 −

𝜋

4

2

−
2

2 .3!
(𝑧 −

𝜋

4
)3+⋯

𝑓 𝑧 = 𝑓 𝜋/4 + 𝑓/(𝜋/4) 𝑧 − 𝜋/4 +
𝑓//(𝜋/4)

2!
(𝑧 − 𝜋/4)2+

𝑓///(𝜋/4)

3!
(𝑧 − 𝜋/4)3+⋯ −−−−−− −(1)

𝑓/// 𝑧 = −cos 𝑧 ;
=

2

2
(1 + 𝑧 −

𝜋

4
−
1

2!
𝑧 −

𝜋

4

2

−
1

3!
(𝑧 −

𝜋

4
)3+⋯
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Q1. (a) Expand 𝑓 𝑧 =
1

1−𝑧
in a Taylor series about 𝑧 = 𝑖. Also find the radius of convergence.

𝑓 𝑧 = 𝑓 𝑎 + 𝑓/(𝑎) 𝑧 − 𝑎 +
𝑓//(𝑎)

2!
(𝑧 − 𝑎)2+

𝑓///(𝑎)

3!
(𝑧 − 𝑎)3+⋯

Solution: We know the Taylor expansion

We need to expand 𝑓 (𝑧) in a Taylor series about 𝑧 = 𝑖. So,

Now, from equation (1)

𝑓 𝑧 =
1

1 − 𝑖
1 +

𝑧 − 𝑖

1 − 𝑖
+
(𝑧 − 𝑖)2

(1 − 𝑖)2
+⋯

𝑓 𝑧 = 𝑓 𝑖 + 𝑓/(𝑖) 𝑧 − 𝑖 +
𝑓//(𝑖)

2!
(𝑧 − 𝑖)2+

𝑓///(𝑖)

3!
(𝑧 − 𝑖)3+⋯ −−−−−− −(1)

Now,

𝑓 𝑧 = 1/1 − 𝑧; 𝑓 𝑖 = 1/1 − 𝑖

𝑓/ 𝑧 = 1/(1 − 𝑧)2; 𝑓/ 𝑖 = 1/(1 − 𝑖)2

𝑓// 𝑧 = 2/(1 − 𝑧)3; 𝑓// 𝑖 = 2/(1 − 𝑖)3

𝑓/// 𝑧 = 3!/(1 − 𝑧)4; 𝑓/// 𝑖 = 3!/(1 − 𝑖)4

=  

𝑛=0

∞
(𝑧 − 𝑖)𝑛

(1 − 𝑖)𝑛+1

=  

𝑛=0

∞

𝑎𝑛(𝑧 − 𝑖)𝑛
𝑎𝑛 =

1

(1 − 𝑖)𝑛+1
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𝑓 𝑧 =  

𝑛=0

∞

𝑎𝑛(𝑧 − 𝑖)𝑛 𝑎𝑛 =
1

(1 − 𝑖)𝑛+1

The required Taylor’s series is

Now, using using ratio test,

𝑙 = lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

= lim
𝑛→∞

1

1 − 𝑖
= lim

𝑛→∞

1 + 𝑖

(1 + 𝑖)(1 − 𝑖)

Ratio test

Let lim
𝑛→∞

𝑈𝑛+1

𝑈𝑛
=𝐿 . Then  𝑈𝑛

converges (absolutely) if L<1 and

diverges if L>1. If L=1, the test fails.

=
1 + 𝑖

2

=
1

√2

So, the radius of convergence.

R =
1

𝑙
= √2

𝒙

𝒚

𝑅 = √2

𝒛 = 𝒊

𝑅
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Q. Find the first three terms of Taylor expansion of 𝑓(𝑧) =  1 𝑧2+4 about 𝑧 = −𝑖 and give the region of

convergence. 2021
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4. Laurent’s Theorem (page number 187) 

Laurent’s theorem:

Suppose 𝑓 (𝑧) is analytic inside and on the boundary of the ring-shaped region 𝑅 bounded by two concentric circles 

𝐶1 and 𝐶2 with center at 𝑎 and respective radii 𝑟1 and 𝑟2 (𝑟1 > 𝑟2) (see Fig. 6-5). Then for all 𝑧 in 𝑅,

𝐶2
𝑧

𝑎𝑛 =
1

2𝜋𝑖
 
𝐶1

𝑓(𝑤)

(𝑤 − 𝑎)𝑛+1
𝑑𝑤 𝑛 = 0,1,2,3… . .

𝑎

07-09-2021 98

𝐶1

𝑟1

𝑟2

𝑅

𝑓 𝑧 =  

𝑛=1

∞

𝑎−𝑛(𝑧 − 𝑧0 )
−𝑛 + 

𝑛=0

∞

𝑎𝑛(𝑧 − 𝑧0 )
𝑛

Where

𝑎−𝑛 =
1

2𝜋𝑖
 
𝐶1

𝑓(𝑤)

(𝑤 − 𝑎)−𝑛+1
𝑑𝑤 𝑛 = 1,2,3… . .

Laurent’s theorem proof: (Assignment) (Marks:15)

Principal part   + Analytic part

= ⋯+
𝑎−𝑛

𝑧 − 𝑧0
𝑛 +

𝑎−𝑛+1

𝑧 − 𝑧0
𝑛−1 +⋯+

𝑎−1

𝑧 − 𝑧0
+ 𝑎0 + 𝑎𝑛 𝑧 − 𝑧0

1
+⋯
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Q. Find Laurent series about the indicated singularity for each of the following functions
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1. 𝑓 𝑧 =
𝑠𝑖𝑛𝑧

𝑧
; z = 0

1. solution.: 

𝑓 𝑧 =
𝑠𝑖𝑛𝑧

𝑧

=
1

𝑧
𝑧 −

𝑧3

3!
+
𝑧5

5!
+ ⋯

= 1 −
𝑧2

3!
+
𝑧4

5!
+ ⋯

= No principal part

So, this is removable singularity

2. 𝑓 𝑧 =
𝑠𝑖𝑛𝑧

𝑧2
; z = 0

2. solution.: 

𝑓 𝑧 =
𝑠𝑖𝑛𝑧

𝑧2

=
1

𝑧2
𝑧 −

𝑧3

3!
+
𝑧5

5!
+⋯

=
1

𝑧
−
𝑧

3!
+
𝑧3

5!
+ ⋯

So, isolated singularity of order 1.

𝒙

𝒚

3. 𝑓 𝑧 =
𝑒2𝑧

(𝑧 − 1)3
; z = 1

Let 𝑧 − 1 = 𝑢. Then 𝑧 = 𝑢 + 1 and  

3. solution.: 

𝑓 𝑧 =
𝑒2𝑧

(𝑧 − 1)3

=
𝑒2(𝑢+1)

(𝑢)3

=
𝑒2

𝑢3
. 𝑒2𝑢

=
𝑒2

𝑢3
1 + 2𝑢 +

(2𝑢)2

2!
+ ⋯

=
𝑒2

(𝑧 − 1)3
+

2𝑒2

(𝑧 − 1)2
+

2𝑒2

(𝑧 − 1)
+
4𝑒2

3
+
2𝑒2

3
𝑧 − 1 + ⋯

𝑧 = 1 is a pole of order 3, or triple pole. The

series converges for all values of 𝑧 ≠ 1.
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𝒙

𝒚

ℛ

Q. Expand 𝑓 𝑧 =
1

(𝑧−1)(𝑧−2)
in a Laurent series valid for 1 < 𝑧 < 2

Ans.:

𝑓 𝑧 =
1

(𝑧 − 2)
−

1

(𝑧 − 1) 
1

1−𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 +⋯ 𝑧 < 1

𝑧 < 2 so
𝑧

2
< 1

Here, the given region

The given function

and

𝑧 >1 so
1

𝑧
< 1

We have to remember these two

condition while expanding the function

Now,

𝑓 𝑧 =
1

−2 [1 −
𝑧
2]
−

1

𝑧(1 −
1
𝑧)

𝑓 𝑧 = −
1

2
1 +

𝑧

2
+

𝑧

2

2

+⋯ −
1

𝑧
1 +

1

𝑧
+

1

𝑧

2

+⋯

= … .−
1

𝑧

3

−
1

𝑧

2

−
1

𝑧
−
1

2
−

𝑧

22
−
𝑧2

𝑧3

=  

𝑛=1

∞

𝑎−𝑛(𝑧 − 𝑧0 )
−𝑛 + 

𝑛=0

∞

𝑎𝑛(𝑧 − 𝑧0 )
𝑛
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Evaluation of definite integrals
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 The evaluation of definite integrals is often achieved by using the residue theorem together with a suitable 

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇 (𝒛) and a suitable closed path or 𝒄𝒐𝒏𝒕𝒐𝒖𝒓 𝑪, the choice of which may require great ingenuity.

The following types are most common in practice:

; where F 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 is a rational function of 𝑠𝑖𝑛𝜃 and 𝑐𝑜𝑠𝜃.1.  

0

2𝜋

𝐹 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃

2.  

−∞

+∞

𝐹 𝑥 𝑑𝑥 ; where F 𝑥 is a rational function.

3.  

−∞

+∞

𝐹 𝑥 sin𝑚𝑥
cos𝑚𝑥

𝑑𝑥 ; where F 𝑥 is a rational function.

Convert the rational

function into a suitable

complex function i.e. F(z)

Choose a suitable contour

C to apply CRT

Use CRT to solve the

problem



Evaluation of definite integrals:  0
2𝜋
𝐹 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃

Integration of real fn using CRT

Let 𝑧= 𝑒𝑖𝜃. Then we know

𝑥

𝑦

𝑧 = 𝑒𝑖𝜃

𝑠𝑖𝑛𝜃 =
𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
=
𝑧 − 𝑧−1

2𝑖

𝑄. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 

0

2𝜋
𝑑𝜃

5 + 4𝑠𝑖𝑛𝜃

Solution: 

𝑐𝑜𝑠𝜃 =
𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
=
𝑧 + 𝑧−1

2

And

𝑧 = 𝑒𝑖𝜃

∴
𝑑𝑧

𝑑𝜃
= 𝑖𝑒𝑖𝜃

⇒ 𝑑𝜃 =
𝑑𝑧

𝑖𝑒𝑖𝜃

so that 

 

0

2𝜋
𝑑𝜃

5 + 4𝑠𝑖𝑛𝜃
=  

𝐶

𝑑𝑧
𝑖𝑧

5 +  4. (𝑧 − 𝑧−1) 2𝑖

⇒ 𝑑𝜃 =
𝑑𝑧

𝑖𝑧

=  

𝐶

𝑑𝑧

2𝑧2 + 5𝑖𝑧 − 2

where C is the circle of unit radius with center at the origin as shown in fig.

Now the poles of 𝑓 𝑧 𝑑𝑧

=  

𝐶

𝑓 𝑧 𝑑𝑧

𝑧 =
−5𝑖 ± (5𝑖)2−4 × 2 × (−2)

2 × 2

𝑧 =
−5𝑖 ± 3𝑖

4

𝑧 = −
1

2
𝑖, −2𝑖

-----------------(1)
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𝐹 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃
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𝑧1 = −
1

2
𝑖

Therefore we get two poles

But out of these two, only 𝑧1 lies inside C 

Now residue of 𝑓(𝑧) at 𝑧1 = −
1

2
𝑖

𝑅𝑒𝑠 𝑓 𝑧 , (−
1

2
𝑖) = lim

𝑧→𝑧1

1

𝑚 − 1 !

𝑑𝑚−1

𝑑𝑚−1 𝑧 − 𝑎 𝑚𝑓(𝑧)

= lim
𝑧→−

1
2𝑖

1

1 − 1 !

𝑑1−1

𝑑1−1
𝑧 +

1

2
𝑖

1

.
1

2𝑧2 + 5𝑖𝑧 − 2

= lim
𝑧→−

1
2
𝑖

𝑧 +
1

2
𝑖 .

1

2 × 𝑧 +
1
2 𝑖 (𝑧 + 2𝑖)

= lim
𝑧→−

1
2
𝑖

1

2(𝑧 + 2𝑖)

𝑧2 = −2𝑖

=
1

2(−
𝑖
2 + 2𝑖)

=
1

3𝑖

Now, apply Cauchy residue theorem, 

from equation (1) 

 

0

2𝜋
𝑑𝜃

5 + 4𝑠𝑖𝑛𝜃
=  

𝐶

𝑑𝑧

2𝑧2 + 5𝑖𝑧 − 2

= 2𝜋𝑖 × 𝑅𝑒𝑠 𝑓 𝑧 , (−
1

2
𝑖)

= 2𝜋𝑖 ×
1

3𝑖

𝑅𝑒𝑠 𝑓 𝑧 , (−
1

2
𝑖)

=
2

3
𝜋

This is the required integration.

𝑥

𝑦

𝑧 = 𝑒𝑖𝜃

−
1

2
𝑖



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 𝑑𝑥

 Consider  𝐶 𝑓 𝑧 𝑑𝑧 along a contour 𝐶 consisting of the line along the 

𝑥 axis from −𝑅 to +𝑅 and the semicircle Γ above the 𝑥 axis having this 

line as diameter. 

Γ

𝑥

𝑦

−𝑅 +𝑅

 Suppose the given integral is  −∞
+∞

𝐹 𝑥 𝑑𝑥

Step 1: 𝐹(𝑥) ⇒ 𝐹(𝑧)

Step 2: Choose the contour i.e.

 

𝐶

𝐹 𝑧 𝑑𝑧 =  

Γ

𝐹 𝑧 𝑑𝑧 +  

−𝑅

+𝑅

𝐹 𝑥 𝑑𝑥

2𝜋𝑖 × 

𝑘=1

𝑛

𝑅𝑒𝑠 𝐹 𝑧 ,𝑧𝑘 =  

Γ

𝐹 𝑧 𝑑𝑧 +  

−𝑅

+𝑅

𝐹 𝑥 𝑑𝑥

Step 3: We will take limit 𝑅 → ∞. After taking 

limit we will found that 

lim
𝑅→∞

 

Γ

𝐹 𝑧 𝑑𝑧 = 0

lim
𝑅→∞

 

−𝑅

+𝑅

𝐹 𝑥 𝑑𝑥 = 2𝜋𝑖 × 𝑅𝑒𝑠 𝐹 𝑧 ,𝑧𝑘

𝑧 = 𝑅𝑒𝑖𝜃

This implies that

⇒  

−∞

+∞

𝐹 𝑥 𝑑𝑥 = 2𝜋𝑖 × 𝑅𝑒𝑠 𝐹 𝑧 ,𝑧𝑘

This is the required integration



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 𝑑𝑥

Integration of real fn using CRT

𝑄. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒  

−∞

+∞
𝑑𝑥

(𝑥6 + 1)

Solution: 

 

−∞

+∞
𝑑𝑥

(𝑥6 + 1)
=  

𝐶

𝑑𝑧

(𝑧6 + 1)

Γ

𝑥

𝑦

−𝑅 +𝑅

𝑧 = 𝑅𝑒𝑖𝜃

where the contour 𝐶 consisting of the line along the 𝑥 axis from −𝑅 to +𝑅 and the

semicircle Γ above the 𝑥 axis having this line as diameter.

Now poles of 𝑓 𝑧 =  1 (𝑧6 + 1) are (i.e. solution of 𝑧6 + 1=0 )

𝑒  𝜋𝑖 6, 𝑒  3𝜋𝑖 6, 𝑒  5𝜋𝑖 6, 𝑒  7𝜋𝑖 6, 𝑒  9𝜋𝑖 6 𝑎𝑛𝑑 𝑒  11𝜋𝑖 6

Out of these 6 poles only 𝑒  𝜋𝑖 6, 𝑒  3𝜋𝑖 6 𝑎𝑛𝑑 𝑒  5𝜋𝑖 6 are lies inside the contour.



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 𝑑𝑥
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𝑅𝑒𝑠 𝑓 𝑧 , (𝑒  𝜋𝑖 6) = lim
𝑧→𝑒  𝜋𝑖 6

𝑧 − 𝑒  𝜋𝑖 6 .
1

𝑧6 + 1

Now residues at poles 𝑒  𝜋𝑖 6, 𝑒  3𝜋𝑖 6 𝑎𝑛𝑑 𝑒  5𝜋𝑖 6

= lim
𝑧→𝑒  𝜋𝑖 6

1

6𝑧5

=
1

6
𝑒−5𝜋𝑖/6

Similarly

𝑅𝑒𝑠 𝑓 𝑧 , (𝑒  3𝜋𝑖 6) = lim
𝑧→𝑒  3𝜋𝑖 6

𝑧 − 𝑒  3𝜋𝑖 6 .
1

𝑧6 + 1 =
1

6
𝑒−5𝜋𝑖/2

and

𝑅𝑒𝑠 𝑓 𝑧 , (𝑒  5𝜋𝑖 6) = lim
𝑧→𝑒  5𝜋𝑖 6

𝑧 − 𝑒  5𝜋𝑖 6 .
1

𝑧6 + 1
=
1

6
𝑒−25𝜋𝑖/6

𝑧6 = (𝑒  𝜋𝑖 6)6= 𝑒𝑖𝜋 = cos 𝑖𝜋 + 𝑖𝑠𝑖𝑛 𝑖𝜋 = −1

𝐿′𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙′𝑠 𝑟𝑢𝑙𝑒

lim
𝑧→𝑐

𝑓(𝑧)

𝑔(𝑧)
= lim

𝑧→𝑐

𝑓′(𝑧)

𝑔′(𝑧)

If   lim
𝑧→𝑐

𝑓(𝑧)

𝑔(𝑧)
undetermined i.e.

lim
𝑧→𝑐

𝑓(𝑧)

𝑔(𝑧)
=
0

0
𝑜𝑟 lim

𝑧→𝑐

𝑓(𝑧)

𝑔(𝑧)
=
∞

∞

Then  lim
𝑧→𝑐

𝑓(𝑧)

𝑔(𝑧)
can be written as



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 𝑑𝑥

Integration of real fn using CRT

Thus, from Cauchy residue theorem

 

𝐶

𝑑𝑧

(𝑧6 + 1)
= 2𝜋𝑖

1

6
𝑒−5𝜋𝑖/6 +

1

6
𝑒−5𝜋𝑖/2 +

1

6
𝑒−25𝜋𝑖/6

⇒  

Γ

𝑑𝑧

(𝑧6 + 1)
+  

−𝑅

+𝑅
𝑑𝑥

(𝑥6 + 1)
=
2𝜋

3

 

𝐶

𝑑𝑧

(𝑧6 + 1)
= 2𝜋𝑖 −𝑐𝑜𝑠30 − 𝑖𝑠𝑖𝑛30 + 0 − 𝑖 + 𝑐𝑜𝑠30 − 𝑖𝑠𝑖𝑛30

Now

Γ

𝑥

𝑦

−𝑅 +𝑅

𝑧 = 𝑅𝑒𝑖𝜃

𝐼1 =  

Γ

𝑑𝑧

(𝑧6 + 1)
=  

Γ

𝑖𝑅𝑒𝑖𝜃𝑑𝜃

𝑅6𝑒𝑖6𝜃 + 1

⇒ 𝐼1 +𝐼2 =
2𝜋

3

𝑧 = 𝑅𝑒𝑖𝜃

∴
𝑑𝑧

𝑑𝜃
= 𝑖𝑅𝑒𝑖𝜃

⇒ 𝑑𝑧 = 𝑖𝑅𝑒𝑖𝜃𝑑𝜃

𝐼1 ≤  

Γ

𝑖𝑅𝑒𝑖𝜃𝑑𝜃

𝑅6𝑒𝑖6𝜃 + 1
→ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡or

Therefore when the limit 𝑅 → ∞ , then 𝐼1 becomes

lim
𝑅→∞

𝐼1 = lim
𝑅→∞

 

Γ

𝑖𝑅𝑒𝑖𝜃𝑑𝜃

𝑅6𝑒𝑖6𝜃 + 1
= 0

-----------------(1)

𝑒𝑔. 5 − 3 − 1 ≤ 5 + −3 + −1



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 𝑑𝑥

Integration of real fn using CRT

lim
𝑅→∞

 

Γ

𝑑𝑧

(𝑧6 + 1)
+ lim

𝑅→∞
 

−𝑅

+𝑅
𝑑𝑥

(𝑥6 + 1)
=
2𝜋

3

Now taking limit on both side of equation (1)

⇒ 0 + lim
𝑅→∞

 

−𝑅

+𝑅
𝑑𝑥

(𝑥6 + 1)
=
2𝜋

3

⇒  

−∞

+∞
𝑑𝑥

(𝑥6 + 1)
=
2𝜋

3

This is the required integration.

A𝑙𝑠𝑜,  

−∞

+∞
𝑑𝑥

(𝑥6 + 1)
=
𝜋

3



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 sin𝑚𝑥
cos 𝑚𝑥

𝑑𝑥

Consider

Where C is a contour as shown in figure.

𝑄. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒  

−∞

+∞
𝑐𝑜𝑠𝑚𝑥 𝑑𝑥

(𝑥2 + 1)
𝑤ℎ𝑒𝑟𝑒 𝑚 > 0.

Solution: 

 

−∞

+∞
𝑐𝑜𝑠𝑚𝑥 𝑑𝑥

(𝑥2 + 1)
=  

𝐶

𝑒𝑖𝑚𝑧𝑑𝑧

(𝑧2 + 1)

The function 𝑓 𝑧 =
𝑒𝑖𝑚𝑧

(𝑧2+1)
has simple pole at 𝑧 = ±𝑖

Out of these two poles only 𝑧 = +𝑖 lies within the contour C 

Now, from Cauchy residue theorem

 

𝐶

𝑒𝑖𝑚𝑧

(𝑧2 + 1)
𝑑𝑧 = 2𝜋𝑖 × 𝑅𝑒𝑠 𝑓 𝑧 , 𝑖)

 

Γ

𝑒𝑖𝑚𝑧

(𝑧2 + 1)
𝑑𝑧 +  

−𝑅

+𝑅
𝑒𝑖𝑚𝑧

(𝑥2 + 1)
𝑑𝑥 = 2𝜋𝑖 × lim

𝑧→𝑖
𝑧 − 𝑖 .

𝑒𝑖𝑚𝑧

(𝑧 − 𝑖)(𝑧 + 𝑖)

Γ

𝑥

𝑦

−𝑅 +𝑅

𝑧 = 𝑅𝑒𝑖𝜃

⇒ 𝐼1 +𝐼2 =
𝜋

𝑒𝑚
-----------------(1)

 

Γ

𝑒𝑖𝑚𝑧

(𝑧2 + 1)
𝑑𝑧 +  

−𝑅

+𝑅
𝑐𝑜𝑠𝑚𝑥

(𝑥2 + 1)
𝑑𝑥 + 𝑖  

−𝑅

+𝑅
𝑠𝑖𝑛𝑚𝑥

(𝑥2 + 1)
𝑑𝑥 =

𝜋

𝑒𝑚

Here

 

Γ

𝑒𝑖𝑚𝑧

(𝑧2 + 1)
𝑑𝑧 +  

−𝑅

+𝑅
𝑐𝑜𝑠𝑚𝑥

(𝑥2 + 1)
𝑑𝑥 =

𝜋

𝑒𝑚



Evaluation of definite integrals: −∞
+∞

𝐹 𝑥 sin𝑚𝑥
cos 𝑚𝑥

𝑑𝑥

Γ

𝑥

𝑦

−𝑅 +𝑅

𝑧 = 𝑅𝑒𝑖𝜃

𝐼1 ≤  

Γ

𝑒−𝑅𝑠𝑖𝑛𝜃𝑅𝑑𝜃

𝑅2𝑒2𝑖𝜃 + 1

Therefore when the limit 𝑅 → ∞ , then 𝐼1 becomes

lim
𝑅→∞

𝐼1 = lim
𝑅→∞

 

Γ

𝑒−𝑅𝑠𝑖𝑛𝜃𝑅𝑑𝜃

𝑅2𝑒2𝑖𝜃 + 1
= 0

lim
𝑅→∞

 

Γ

𝑒𝑖𝑚𝑧

(𝑧2 + 1)
𝑑𝑧 + lim

𝑅→∞
 

−𝑅

+𝑅
𝑒𝑖𝑚𝑧

(𝑥2 + 1)
𝑑𝑥 =

𝜋

𝑒𝑚

Now taking limit on both side of equation (1)

⇒  

−∞

+∞
𝑒𝑖𝑚𝑧

(𝑥2 + 1)
𝑑𝑥 =

𝜋

𝑒𝑚

Now

𝐼1 =  

Γ

𝑒𝑖𝑚𝑧

(𝑧2 + 1)
𝑑𝑧 =  

Γ

𝑒𝑖𝑚𝑅(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃)𝑅𝑖𝑒𝑖𝜃𝑑𝜃

𝑅2𝑒2𝑖𝜃 + 1

𝐼1 ≤  

Γ

𝑒 𝑖𝑚𝑅(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃) 𝑅𝑖𝑒𝑖𝜃 𝑑𝜃

𝑅2𝑒2𝑖𝜃 + 1

This is the required integration.

A𝑙𝑠𝑜,  

0

+∞
𝑒𝑖𝑚𝑧

(𝑥2 + 1)
𝑑𝑥 =

𝜋

𝑒𝑚

Integration of real fn using CRT


