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Svyllabus

Unit I: Complex Analysis (Lectures 10)

1. Function of complex variables

2. Analytic and Cauchy-Riemann conditions
3. Example of analytic functions

4. Singular functions: Poles and branch points

5. Order of singularity
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Here, r = e'= 2.718 and argument, 0
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Q. Plot the number e
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Q. Plot the number ¢



Some important problem

Q. What does the equation |z — i| = 2 Q. Find an equation for (a) a circle of radius 4 with center at
represent? (2015, mark: 1) i1 (-2,1) or (=2 + i). (Page no. 15, Book: Schaum’s outline)
i Ans.: Here Z is any complex number.
; . ! Ans.:The center can be represented by the complex no. i
|z - =2 ! (-241i). If Z is any point on the circle, the !
i i distance from Zto 2 + i is
Complex number Z— (=240 =4
imag. axis This is the required equation.
i i i Imag. axis !
> i (—2+0) @
| \/ Real axis i i |
| - | ¢ > i
! | _9 Real axis i
So, the given eq. represent a circle of
radius 2 at center i. L oG .




Function of complex variables

 Asymbol, such as Z, which can stand for any one of a set of complex numbers is called a complex variable.
Z=x+1y

Q. What do you mean by a function?

Ans.: A function is a procedure which gives a unique output for any suitable input.
The set of suitable input is called as domain of the function while the set of outputs which are possible is called
the range of the function.

Mapping

. i
- I
|

1 . . . .. . X :xZ Y A 1
| Real function: Let, y is a function of x and this is written as : E
! Domain Range |
i y=f(x) Independent  Dependent !
| variable variable :
i For example, y = x? > ? i
I Py =X 2 4 > X |
i 0 0 |
i 2 i
i 3 9 ]
! '



Function of complex variables

Z=x+1iy W =f(Z)
Or mmm) | Function machine | ) =u+iv
Z=(x9) Or
W = (u,v)

O Now, for example, let us consider a complex variable
W=rFfZ)=2? y Mapping v

=>u+iv = (x+iy)?
=>u+iv = (x%-y?)+i(2xy)

Q __--- -»>
Therefore, weget | | N ___Zde=emm7"
g _____ Image

u=x%—y?

v
=
<

vV = 2xy

So, u and v is a function of (x,y)
i.e.u(x,y)and v (x,y)

Z —[}J?éane W — plane




Q. Write the polar form of the given complex number.

Z=(-1+1)

z =1(cosO + isinf)



Roots of complex no. (not include in syllabus)

The root of a number x is another number, which when
multiplied by itself a given number of times, equals x.

Q. Find the roots and locate them graphically. (pg. no. 23)
(—1+ )3

[ .

Solution: '

olution:  We can write Suppose x=4, Now
W = z1/3 y =4

Where, Z is a complex no. i.e.,Z = —1 + i and W is a function of Z. = S0 roots of 4 is £2

Since, the polar formof,Z = — 1 + i

Z=—1+i=+vV2{cos(3n/4 + 2kn) + i sin(3w/4 + 2km)}

3n/4 + 2km 3n/4 + 2km
713 = (=1 4 )1/3=21/6 {Cos< / ) + i sin / )}

3 3

Ifk=0,Z, =2Y%(cosm/4 +isinm/4)
Ifk=1,Z, = 2Y°(cos 11m/12 + i sin 111 /12)
If k=2,Z3 =2Y%(cos19m/12 + i sin 191 /12)

So these are the required roots. DJG
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» Roots of complex number (pg. no 23)
* Riemann surface (pg. no 46)

» Function of complex variable

« Branch line (pg. no. 45)

« Branch point (pg. no 45)

Roots of complex no.

= Each sheet corresponds to a branch of the function and on each sheet the function is single-

valued.

= The concept of Riemann surfaces has the advantage that the various values of multiple-
valued functions are obtained in a continuous fashion.
= For example, for the function z1/3 the Riemann surface has 3 sheets; for In z, the Riemann

surface has infinitely many sheets.
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Neighbourhood (page 7)

Neighborhoods: A delta, or §, neighborhood of a point z, is the set of all points z such that |z — zy| < 6, where §
IS any given positive number.
A deleted 6 neighborhood of z, is a neighborhood of z, in which the point z, is omitted, i.e., 0 <

|Z - ZOl < 5 - A
1 Disk Punctured disk
Im Im
Xg = 10
< ® > < > < B
Re Re
Real number line
Z-plane Z-plane
Suppose 6 =1, neighborhood of a Suppose § = 1, neighborhood of a point z, is Deleted neighborhood, when we
point x, is the set of all points x such the set of all points =z such that omitted the point z, i.e.
that |x —xy] <6 (i.e.|x — 10]) < 1. |1z —zo| < 6 (i.e.|z — zp]) < 1. 0<|z—2z| <6.
Then neighbourhood are: ...9.8, 9.9,
10.1, 10.2.. .etc.
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Limit (page 46)

Limit: Let f (z) be defined and single-valued in a neighborhood of z = z, with the possible exception of z — z, itself
(i.e., in a deleted 6 neighborhood of z,). We say that the number [ is the limit of f (z) as z approaches z, and write
lim,_,, f(z) = L if for any positive number € (however small), we can find some positive number & (usually

depending on € ) such that f(z) — [ < e whenever 0 < |z — z,| < 6.

feo \
« - . «
Real function Z-plane W-plane
Here f(x) —l <€ Here 0 < |z —zy| < 6 Here f(z) — Il <€

and 0 < |x — x| < & DJG 13




Derivatives (page 77)

Derivative: If f (z) is single-valued in some region R of the z plane, the derivative of f (z) is defined as

_ f(z+Az) - f(2)
/(z) =
fi(2) Al;r—{lo Az
provided that the limit exists independent of the manner in which Az — 0. In such a case, we say that f (z) is
differentiable at z. Although differentiability implies continuity, the reverse is not true.

f) ] f) ! fox) = x| |
—
) X ’ ) X ’ X
Real function Real function
f/(x) = lim flx+Ax) — f(x) A discontinuous function can not Continuous at the corner but not
Ax—0 Ax be differentiable. differentiable.

DIG 14



Derivatives (page 77)

= Let z be a point P in the z —plane and let w be its image P/ in the w-plane under the transformation w = f(z).

= |f we give z an increment Az, we obtain the point Q of z —plane. This point has image Q/ in the w plane. Thus, from w
plane, we see that P/Q/ represents the complex number Aw = f(z + Az) — f(2). It follows that the derivative at z is given

fa+d)—f(z) _ . P/of

/ — 1i
fiz) = fim, Az o=P PQ
yorIm| K 0/
Mapping yorIm D
Q _ Aw
w = f(z)

= f(z+Az) — f(2)
Az =(z+Az) —z

A

=
Qo
ﬁ
~
1]
'y
\
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Analytic Function (page 77)

¢ Definition:

= If the derivative f/(z) exists at all points z of a region R, then f (2) is said to be analytic in R and is
referred to as an analytic function in R or a function analytic in R.

= A function f (z) is said to be analytic at a point z, if there exists a neighborhood |z — z,| < 6 at all points

of which f/(z) exists.

Q. How do you check the differentiability of a function?

Ans. Checked the limit and continuity of the function at the given region.

Limit mmss) | Continuity | =) | Differentiable

Or

Cauchy—Riemann Equations

DIG 16



Cauchy—Riemann Equations (page 77)

++ Definition:

Necessary condition

= Anecessary conditionthat w = f (z) = u(x,y) + iv(x, y) be analytic in a region R is that, in R, u and v satisfy the
Cauchy—Riemann equations

du O0v ou Jov
— = and — = ——
dx 0dy ady 0x

Sufficient conditions

= If the partial derivatives of the above equations are continuous in R, then the Cauchy—Riemann equations are
sufficient conditions that f (z) be analytic in R.

= In polar form C-R equations

au_lav
or r oo

av_ 10u

ar  roé

DIG 17



Cauchy—Riemann Equations (page 77)

Q. Show that %z‘ does not exist anywhere, i.e., f(z) = z/ is non-analytic anywhere. (without using C-R equations)

DIG 18

Solution: By definition, . L z
SOIHON. BY i If Ay = 0, the required limit is Ax 50 >0 <
d _ fz+A2)-f(2) ! :
—f(z) = lim i 4 - _ Ax—tAy Ay =
dzf( ) Az—0 Az i z% = Al)lcr_r)lo Ax+iAy
i Ay=0
If this limit exists independent of the manner in !  Ax
which Az = Ax + iAy approaches zero ; = Al}cr_‘?og
- i Ay=0
d__l_ (Z+AZ)—Z_ i =1
dZZ = A70 Az i
_ _ ____ 1 IfAx =0, the required limit is o 7
~ lim (x+iy+Ax +idy)—x+iy | ) Ax—idy Ax=0 4
Ax—0 Ax + iAy ! EZ B Alylcrzno Ax+ilAy Ay - 0
Ay—0 i Ay—0
 (x—iy+Ax—iAy) — (x—iy) ! — 1
= lim : ; = —
ﬁxﬂg Ax + iAy i
Y Az Then, since the limit depends on the manner in which Az — 0, the
y Ax — iAy | derivative does not exist, i.e., f(z) = z/is non-analytic anywhere.
vt Ax + iAy !
Ay—0 i



Cauchy—Riemann Equations (page 77)

Q. Show that %z‘ does not exist anywhere, i.e., f(z) = z/ is non-analytic anywhere. (using C-R equations)

Solution: The given function Since, the given function does not follow the C-R equations,

_ - — /i i :
w=fz)=xFDy therefore the function f(z) = z/ is non-analytic.

=>u(x,y)+iv(x,y) =x—1iy

~ulx,y)=x and v(x,y)=-y

Now taking the partial derivative of f(z)

6u_1 B

dx auiav

v T ox dy

dy o

Ju )

— =0

dy du_ ov

ov 9y ox

a= DJG 19




Cauchy—Riemann Equations (page 77)

Q. Prove that a (a) necessary and (b) sufficient condition that w = f(z) = u(x,y) + iv(x,y) be analytic in a region R is that the

Cauchy—Riemann equations Z—Z = Z—; and Z—; = —Z—z are satisfied in R where it is supposed that these partial derivatives are
continuous in R. I
Z=x+1y
Solution: Az = Ax + iAy

(a) Necessity: In order for w = f(z) to be analytic, the limit

[zt A7) — f(2)

w = f(Z) = u(x, }7) + iU(X, Y)

E w=fz)=u+iv E

= () w=f(z+Az) =u(x+Ax,y + Ay) + iv(x + Ax,y + Ay)
Azeo Az - G
_ lim {ulx + Ax,y + Ay) + iv(x + Ax,y + Ay)} — {ulx,y) + iv(x,»)} (1)
N ﬁx_)(o) Ax + iAy
y—)

must exist independent of the manner in which Az (or Ax and Ay) approaches zero. We consider two possible approaches.
Case I: Ax — 0,Ay = 0. In this case eg. 1 becomes

{fulx + Ax,y) + iv(x + Ax, y)} — {u(x,y) + iv(x, y)}

/ =
f (Z) Alylcr—r}O Ax
Ay=0
. fulx +Ax,y) —u(x, y) v(x + Ax,y) — v(x ) au v e (2)
= lim +
Ax—=0 Ax Ax ax 20

Ay=0



Cauchy—Riemann Equations (page 77)

Case Il: Ax = 0,Ay — 0. In this case eg. 1 becomes

Joos oy w(y + Ay) + ivxy + Ay)) — {ulx, y) +iv(x, y)}
1) = Alalcr=no A
Ay—0 2y

. {u(x,y +Ay) —u(x,y) vixy+Ay) —v(x, y)}
= lim - +

Ax=0
oy &

_16u+6v
~idy 0y

ou 0
= — —u + —v __________ (3)
dy Ody
Now f (z) cannot possibly be analytic unless these two limits are identical i.e. eq. (2) and (3) are equal. Thus, a necessary
condition that f (z) be analytic is

6u+_6v_ _6u+6v
d0x lax_ lay ay

Or

du Jdv p du v c_p t'
- — = - — R equations
dx Ody an dy 0x q
DJG 21




Cauchy—Riemann Equations (page 77)

Mapping
w = f(2)

A

Z-plane

Since, Aw is the small increment of the function w = f(2)

Aw = f(z+ Az) — f(2)

If f (z) is continuous and has a continuous first derivative in a region, then

_fz+A4z) - f(2)
w = Az
Az

= {f/(z) + e} Az

Where e = 0 as Az = 0. Now we can write the differential of w or f(z)

dw = f/(z)dz DIG

yorIm D

Aw
=f(z+A4z) - f(2)

A

flz+82) - f(z) f(z+Az) - f(2)

fl@) = Al;r—I»lo Az Az
i + e = LD O

When Az — 0 we can write Az = dz and - Aw = dw



Cauchy—Riemann Equations (page 87)

. . ) ou ou : ; o :
() Sufficiency: Since —— and o, &€ supposed to be continuous, we have If the partial derivatives of the above equations are
continuous in R, then the Cauchy—Riemann equations are
Au=u(lx + Ax,y + Ay) —u(x,y) sufficient conditions that f (z) be analytic in R.

={ulx+ Ax,y + Ay) —u(x,y + Ay)} + {ulx,y + Ay) —u(x,y)}

u(x + Ax,y + Ay) —u(x,y + Ay) ulx,y + Ay) —u(x,y)
= A Ax + Ay Ay

= 6u+ Ax + 6u+ A
=3z 76 |Ax (ay n1)Ay

_Ou ou
= 3x —Ax + @Ay + €,Ax + n1Ay

Where €, - 0and n; = 0as Ax - 0 and Ay — 0.

_ .9 ] :
Similarly, since ﬁ and a—v are supposed to be continuous, we have

y
po = ax + 0y 4 e hx 4+ oA
= 33 0% + 554y + €% + 18y

Where €, - 0and n, - 0as Ax - 0 and Ay — 0.

DIG 23



Cauchy—Riemann Equations (page 87)

Since our function is
w = f(2)

=u-+iv
Now,
Aw = Au + iAv

_ Ou ou v v
= — Ax + @Ay + €;Ax + n{Ay + La—Ax + L@Ay + ie;Ax + iny Ay

au+avA+au+a Ay + (1 + i€x)Ax + (1, +iny)A
o Tio— | Ax 3y lay y + (€1 +i€;)Ax + (1 +iny)Ay

6u+ ov Ax + 6u+_6v Ay + eAx + nA 4
ox lax X ay lay y enx mwmy ... mmmemmeeees ()
Where €; +ie;, » 0andn,; +in, - 0as Ax - 0 and Ay — 0.

By the Cauchy-Riemann equations, (4) can be written as

aw = (24 i 2 e+ (-2 Ay + edx +qa
W_ax laxx 0x la yreax ey

au_av Ju v
= 9% ax + iny) + 2 (idx — Ay) + eAx + A
—axle axlx y) + €eAx + nAy

—au(A +'A)+av'A 1A + eAx + nA
= o (Bx +idy) + =i Ax —— Ay exDJGny y



Cauchy—Riemann Equations (page 77)

ou ov
Aw = P (Ax + iAy) + P i(Ax + iAy) + eAx + nAy

Then, on dividing by Ax + iAy on both side and taking the limit as Az — 0

lim LEFAD @ _ o ov Aw = f(z + A7) — f(2)
Az—0 Az ox 0x

aw y _6u+_6v

dz_f(z)_ax lax

So that the derivative exist and unique i.e. f(z) is analytic in R.

When Then

We will assume that

the derivative are Get the expression The final expression is

We use C-R

-)

continuous and
proceed with this
assumption

nothing but the derivative
of the given function f(z)

equations

“lent So the function f(z) is
DIG analytic ’c



Home work (page no. 54, 80)

U Proof the following relation

) eiz_e—iz .
L.sinz = — 5 sin2z + cos?z = 1 9.Ecos(hz) = sin(hz)
iz —iz
2.cosz = ¢ +26 6.sin(iz) = isin(hz)
e? —e™? ,
3.sin(hz) = — 7.cos(iz) = cos(hz)
e’ +e” d
4.cos(hz) = — 8.Esin(hz) = cos(hz)

DIG 26



Cauchy—Riemann Equations (page 92)

Q. Show that the function sinz is analytic and hence find the derivative f/(z).

Solution: Since the given function is Since the C-R equation verified so the function is analytic.
w = f(2) | NoOW
u+iv = sinz | w=f(z) =u+iv
= si ] | ou dv
in(i X e ) :’f/(z):a—+ia—
sin(iy) = i sinhy = sin x cos(iy) + cosx sin(iy) X x

cos(iy) = coshy = cosx.coshy — isinx.sinhy

= sin x cos hy + i cosx sin hy

= cosx.coshy — sinx. (isinhy)
~u=sinxcoshy andv = cosxsinhy

Now by using C-R equations —— = cosx. cos(iy) — sinx.sin(iy)

9 | _ .
72~ cosx. coshy ou OJv cos(x + iy)
d0x L = | B

dx dy ; = cos(2)
ov _ "
@ = cosx.cosny - i f/(Z) — COS(Z)
ou_ ] |
— = sinx sinhy
dy ou ov
oy = ~Sinx.sinhy y |

DJG 27




Cauchy—Riemann Equations

Q. Show that the function In(z) is analytic and hence find the derivative f/(z).

Solution: Since the given function is

w = f(z)
u+iv =lInz
= In(re'?)

7 = ret?

where, 8 = tan™1(Y/x)

= In(r) + In(e'®)

=In(yx2 +y2 +itan"1(Y/y)

1
LU= > In(x* +y2) and v = tan™?! (y/x)

Now by using C-R equations

=/ )
g—;= x/(x* +y%)
Z—; =y/(x* +y%)
i —y/(x* +y?)

au_av
T ox dy

du dv
— =

dy d0x

Since the C-R equations are verified so the function is analytic.

Now,
w=f(z) =u+iv

x —1y

- (x + iy).(x — iy)

_ 1
 (x +iy)

fl@) =

. This is the required derivative of In(z).
! DJG
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Singular Points or Singularities (page 81-82)

Definition: Singular point
If £(z) fails to be analytic in some point Z, but analytic in some neighbourhood of that point then the point Z, is called
the singular point or singularity of f(z).

1

Example 2: Find the singular point of the function f(z) = PvE

Example 1: Find the singular point of the function f(z) = =.

A

When we put Z = —i, the function will blow up and
elsewhere the function is analytic except Z = —i. S0 Z = —i
Is called the singular point.

Im Here f(z) is not analytic at the point z,

But, f(z) is analytic in the region 0 < [z| < R

AN

A

Z-plane Im 4
Here f(z) is not analytic at the point Z = —i
When we put Z=0, the function will blow up and But, f(z) is analytic in the region 0 < |z| < R
elsewhere the function is analytic except Z=0. So Z=0 is
called the singular point. ‘ B Re
@ Z —1
1IDJG 3 29

Z-plane



Singular Points or Singularities (page 81-82)

How to find singularity of a given function?

Just put the denominator of the given function equal to zero and solve
the equation, the obtained roots or solution of the equation denotes the
singularities.

DIG 30




Singular Points or Singularities (page 81-82)

Types of singularities:

1. Isolated singularities: The point z = z, is called an isolated singularity or isolated singular point of f (z) if we can find
& > 0 such that the circle |z — z, | = 6 encloses no singular point other than z, (i.e., there exists a deleted § neighborhood

of z, containing no singularity).

. : . . 1
Example 1: Find the singular point of the function f(z) = 12
Im 4
» Here, the singular points are
RJ2) .
z2+4=0 \ Zg = 2i
< g (I)Q >
Or Z=+2i \F Re
. . 6 >ZO = —-2i
So, here we get two singular points, one at Z = 2i and another at Z = —2i. 7)Q\
\q,/ Y Z-plane

« If we can find § > 0 such that the circle |z — 2i| = § encloses no singular point other than z = 2i then this singularity

Is called isolated singular point.

« Ifwe can find § > 0 such that the circle |z + 2i| = é encloses no singular point other than z = —2i then this singularity

Is called isolated singular point. DIG

31



Singular Points or Singularities (page 81-82)

Types of singularities:

2. Poles: If z, is an isolated singularity and we can find a positive integer n such that lim (z — zy)" f(z) = A # 0, then z —

Z—2Z

z, IS called a pole of order n. If n = 1, then z, is called a simple pole.
1

z244°

Example 1: Find the singular point of the function f(z) =

» Here, the singular points are « SoZ = 2iisapoleof order 1 or simple pole.

« S0Z = —2iisapole of order 1 or simple pole.
DJG 32

z—2i (Z + 21)
=1/4i

2 44— i
z:+4=0 { Similarly, for Z = —2i
Or Z = +2i i = lim (z — zy)" f(2)
1 Z—22Zg
So, here we get two singular points, one at Z = 2i and — lim (z + 21)1
another at Z = —2i. Now, for Z = 2i ; z>-2i 2+ 4
= fim @2 @ =i
i z—>-2i (z + 2i)(z — 2i)
= llm (z — 21)1 : 1
z—21 24+ 4 i = lim
) ' z—>—2i (Z — 21)
= lim (z — 2 i .
zl—gll(z 2 (z + 20)(z — 20) ! =1/-4i
1 i
= lim |



Singular Points or Singularities (page 81-82)

1
(z24+4)2°

Example 2: Find the singular point of the function f(z) =

» Here, the singular points are « S0 Z = 2iisa pole of order 2.

2 4 |
z+4=0 | Similarly, for Z = —2i
Or  Z=12 i = lim (z — 2i)?
: : _ ! z——2i (z%2 + 4)?
So, here we get two singular points, one at Z = 2i and i
another at Z = —2i. Now, for Z = 2i l = i — 2i)?
| Jim, (z = 20) (z — 20)2(z + 2i)2
= lim (z — zp)" f (2) : I 1
Z—Z 1 - —
e N ; 1% (z — 20)2
= lim (z — 2i)* — 5 :
zZ—21 (z=+4) ] =1/-16
1 |
— 1 Y FA Y/ I
B zh—>n21i(Z 20) (z — 20)%(z + 2i)>? i = S0Z = —2iisapoleof order 2.
. 1 |
- zh—>nzli (z + 2i)? Example 3: f(z) = —3)2 has a pole of order 2 at z = 3.
=1/-16 i (3z-2)
i Example 4: f(z) = has a pole of order 2 at
: (z-2)%(z-1)  _ -
: z =2, and simple pole at
pIG z=1. 33



Singular Points or Singularities (page 81-82)

Types of singularities:

3. Branch point: Branch Points of multiple-valued functions are non-isolated singular points since a multiple-valued
function is not continuous and, therefore, not analytic in a deleted neighborhood of a branch point.

Example 1: f(z) = (z — 3)Y/? has a branch point at z = 3. This branch point i.e. z = 3 is called a non-isolated singular
point.

Example 2: what is the singular point of f(z) = (z — 3).

» It does not has any singular point.

Example 3: f(z) = In(z? + z — 2) has a branch point where z%2 + z—2 = 0,i.e.,atz = 1 and z = —2. These branch
points are called as non—isolated singular point.
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Singular Points or Singularities (page 81-82)

Types of singularities:

4. Removable singularities: An isolated singular point z, is called a removable singularity of f (z) if lim f(z) exists. By
Z—Z

defining f(z,) = lim f(z), it can then be shown that f (z) is not only continuous at z, but is also analytic at z,.

Z—Z

sinz

Example 1: Find the type of singular point of f(z) = —

» In the given function, z = 0 is singular point. Since if
we put z=0 then the given function will blow up.

Now, sinz

f(Z)=7

1
f(z) = —(sinz)

DIG

Hence we have seen that the singular point z =0 is
removable.

Again,
z% 74

llmf(z) = llm(l ——+§_ )

It has been found that f (z) if lim f(z) exists

z—0

Therefore, the given function has a removable
singular pointat z = 0.
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Singular Points or Singularities (page 81-82)

Types of singularities:

5. Essential singularities: An isolated singularity that is not a pole or removable singularity is called an essential singularity.

Example 1: Find the type of singular point of f(z) = el/?

» Let us expand the given function

f(2) = eV

=1+ . + L (2 2 + L (2 3 +
B Z 2!\ z 3\ z
So, it is found that z = 0 is a singular point and it is neither removable singularity nor a pole (since the power is goes on

increasing).

Such type of singularities are called essential singularities.

If a function has an isolated singularity, then the singularity is either removable, a
pole, or an essential singularity.
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|_aurent Series

07-09-2021 Integration of real fn using CRT



Integration

Definition:
O In mathematics, an integral assigns numbers to functions in a way that describes area, volume, and other concepts that arise
by combining infinitesimal data. The process of finding integrals is called integration. (from Wikipedia)

Integration is basically summation, but with some differences

» Summation has been used when the data are discrete
» Integration has been used when the data are continuous

Area(under the curve)

f(En)
= Add up all the area of rectangular stri N
p f g p y= £ Q
= f(&)(x1 —x0) +f (&) (X2 — xq) + -+ f(E) (xpy — xpp—1) 44/
n /
/
= Z f () (e — xp—1) f(§2) f{s)
o GV
= Z f(fk)Axk ) fl 53 é;n .
k=1 5 2 NIV Z ><= X
When Ax;, — 0, (exist only whgn the function is continuous) v 't'j = i
Area(under the curve) = f f(x)dx
a DJG 38


https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Infinitesimal

Complex Line Integrals (page 111)

QO Let f (2) be continuous at all points of a curve C Fig., which we shall assume has a finite length, i.e., C is a rectifiable
curve.

Now, subdivide C into n parts by means of points z4, z5, . . ., z,_1, chosen arbitrarily, and call a = zy, b = z,,.

On each arc joining z,_4 to z; [where k goes from 1 to n], choose a point &,,.

A
v
A
v

v DJG v 39



Complex Line Integrals (page 111)

QO Let f (2) be continuous at all points of a curve C Fig., which we shall assume has a finite length, i.e., C is a rectifiable
curve.

Now, subdivide C into n parts by means of points z4, z5, . . ., z,_1, chosen arbitrarily, and call a = zy, b = z,,.

On each arc joining z,_4 to z; [where k goes from 1 to n], choose a point &,,.

From the sum,

Sn=fE1)(z1—a)+ f(§)(z2 —2¢) + -+ f(§)(b — 2,_4) y

On writing z;, — z;_1 = Az, this becomes

Sn f(§1)(Zk = Zk-1)

NgE

w
I
=

NgE

f(&r)Azy

w
I
-

A
v

DJG v 40



Complex Line Integrals (page 111)

Let the number of subdivisions n increase in such a way that the largest of the chord lengths |Az, | approaches zero. Then,
since f (z) is continuous, the sum S,, approaches a limit that does not depend on the mode of subdivision and we denote

this limit by

jbf(z)dz or jf(z)dz
a c

1 Z,-1 b=2z,
called the complex line integral or simply line integral of
f (z) along curve C, or the definite integral of f (z) from
a to b along curve C.

In such a case, f (z) is said to be integrable along C. If f (2) is
analytic at all points of a region R and if C is a curve lying in R,
then f (z) is continuous and therefore integrable along C.
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Line Integral for Real Function (no need for exam)

Q. Calculate the line integral of the function ¥ = y*% + 2x(y + 1)y from the point a = (1,1,0) to the point
b = (2,2,0) along path along the path (1) and (2) as shown in figure. Also find the close path integral that goes from

a to b along path (1) and return to a along path (2).
Solution: Since, we know . So, the line integral y

dl = dxx +dyy +dzZ

2
dl = j 4(y + 1)dy =10 2~
Path (1) consist of two parts. | jl (y+Ddy =
Along the (i) horizontal segment, dy = dz = 0,s0 | g, by the path (1)

dl = dxx, y=1, 1-

A

a

b
@) i

(i) J(l)

<
<

b
_ J di=1+10=11
. i a

A

y

I
I
1

2

Meanwhile, on path (2), x = y,dx = dy,and dz = 0, so

2 2 |
Lﬁ. l=j1dx= El):dx9?+dx5/\,

o Bodl = x2dx + 2x(x + 1)dx = (3x2 + 2x)dx

On the (ii) vertical segment, dx = dz = 0, so o
So, the line integral along path (2)

dl = dyy, x =2, fb_,
~ . v
a

»B.dl = 4(y + 1)dy

o

2
dl = j (3x2 + 2x)dx = 10
1

DIG

42



Line Integral for real function (no need for exam)

Now, for the loop that goes out (1) and back (2)

jﬂail’=11—1o=1

y A
Also, for the loop that goes out (2) and back (1) b
2 ——
jﬂailé 10— 11 = —1 @) b
S — 11 e (i)J(l)
So, what we have found in this line integration . I R
v 1 2 x

= The line integration along path (1) and path (2) both have different values.

» The closed line integration for the loop that goes out (1) and back (2) is
different for that of goes out (2) and back (1).

The line integration is path dependent for real function
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Complex Line Integrals (only for concept)

Q. Find the line integral for f(z) = z for the path as shown in figure.

A A A

y y y

1+ 1+

p—

A
\ 4

Path (1) Path (2) Path (3)
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Complex Line Integrals (only for concept)

Solution: Since, Y
zZ=x+1y 1 .
~dz =dx +idy (1,1)
Now,f(z) =x+1iy |
0.0 :
Therefore, j f(2)dz = j (x + iy)(dx + idy) ' 1 x
c c

Path (1): x=0,y=0-1 x=0->1y=1

1 \ 1y \
j f(z)dz=j (O+iy)(0+idy)+j (x +i.1)(dx +i.0)
c 0 0

1 1
= J (—ydy) + f (xdx + idx)
0 0

R S
-7 7 Tt

=1
DJG 45



Complex Line Integrals (only for concept)

y
Path (2):
1 L
x=0-1y=0 x=1Ly=0-1 1
1 |l \ . , .
j f(z)dz=j (x+0)(dx+0)+f (1 +i.9)(0 + i. dy) .
C 0 0 v 1
1 1
= f (xdx) + j (idy — ydy) Path (2)
0 0
_1 1
—27 T3

=i
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Complex Line Integrals (only for concept)

Path (3):

x=y,dx=dy,x=0-1

A
[ |

1
j f(z)dz = f (x + ix)(dx + idx)
C 0

1
= ] (xdx + i.2xdx — xdx)
0

1
= J (i.2xdx)
0

_'21
= 1. .2

=1

So, it is found that the line integration of analytic complex function is
path independent.

) 4

The close path/line integral of analytic complex function is always
Zero.

DIG

y
1 —
- | .
< | x,
‘ 1
Path (3)
y|
f fl(z)dz=i—-i=0

1 — A

\ 4
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Complex Line Integrals (only for concept)

Q. Find the line integral for f(z) = z for the path as shown in figure. y |

Solution:  Since,
z=x+iy =z=x-iy 1 —
~dz =dx +idy

Now, f(z) = x — iy

A
\ 4

1

Therefore,jc f(2)dz = f (x —iy)(dx + idy) h (1)
) Path (1

Path (1): x=0->1,y=0 x=1y=0-1 4

1 |l |
J f(z)dz=j (x—O)(dx+0)+j (1-1i.y)(0+i.dy)
C 0 0

1 1
= j (xdx) + j (i.dy + ydy) 1
0 0

11 ‘ | N
_E+l+5 v 1

14 . Path (2) .

v




Complex Line Integrals (only for concept)

Path (2): y
x=0y=0-1 x=0->1y=1
1 Y \ 1—
J f(z)dz = j (0—iy)(0+idy) + f (x —i.1)(dx +i.0)
C 0 0
ﬁk
1 1
= j (ydy) + j (xdx — idx) « > g
0 0 v 1 X
1 1
L Path (1)
2 27! )
—1—i y
So, it is found that the line integration of non-analytic complex '
function is path dependent. )\
‘ < | >
The close path/line integral of non-analytic complex function is not ! | X
Zero. 1
Path (2)
DJG 49



Cauchy’s Theorem. The Cauchy—Goursat Theorem (page 115)

Cauchy’s Theorem (Statement):

U Let f (2) be analytic in a region R and on its boundary C. Then

i f(z)dz=0

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem or Cauchy—Goursat

theorem, is valid for both simply- and multiply-connected regions.

A

y

_—

f (z) is analytic

<
<

\ 4

Note: This is not Cauchy’s integral formula.
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Simply and Multiply Connected (Page 113)

Q. What is a simple closed curve? (page 83)

» A closed curve that does not intersect itself anywhere is called a simple closed curve.

A

»
>

A

A

n
>

A

n
>

v x v x \/ x

Fig.: Continuous curve or arc Fig.: Simple closed curve Fig.: Non-Simple closed curve
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Simply and Multiply Connected (Page 113)

O Aregion R is called simply-connected if any simple closed curve, which lies in R, can be shrunk to a point without

leaving R. A region R, which is not simply-connected, is called multiply-connected.
y

A 4

b
Fig.: (1) simply-connected region Fig.: (2) multiply-connected region  Fig.: (3) multiply-connected region
with one hole with three holes
Here, R is the region defined by |z| < 2. Here, R is the region defined by 1 < |Z] < 2.
I" is any simple closed curve lying in R and it can be I" is any simple closed curve lying in R and it can not
shrunk to a point that lies in R, and thus does not leave R, possibly shrunk to a point without leaving R, so that R is
so that R is simply-connected multiply-connected.




Jordan Curve Theorem (Page 114)

Jordan Curve

Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called a Jordan curve

Jordan Curve Theorem

A Jordan curve divides the plane into two regions having the curve as a common boundary. That region, which is bounded
[i.e., is such that all points of it satisfy |z| < M , where M is some positive constant], is called the interior or inside of the

curve, while the other region is called the exterior or outside of the curve.

y 1t

Exterior

Interior

53



Convention Regarding Traversal of a Closed Path (114)

O The boundary C of a region is said to be traversed in the positive sense or direction if an observer travelling in this

direction [and perpendicular to the plane] has the region to the left.

O We use the special symbol

i f(z2)dz=0

to denote integration of f (z) around the boundary C in the positive sense. The integral around C is often called a

contour integral.

Note:

*= In the case as shown in the figure, the positive direction is the
counterclockwise direction for the outer circle.
= |n the case as shown in the figure, the positive direction is the

clockwise direction for the inner circle.

DIG
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Contour Integration (wikipedia)

Contour: e
. ] o ] //// \\
A curve, which is composed of a finite number of smooth arcs, is p—— o . 9
called a piecewise or sectionally smooth curve or sometimes a contour. R
Or | B _oaa
An outline representing or bounding the shape or form of something. -
S ] ii =gl e

Fig.: Contour line.

Contour Inteqgration:

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths
in the complex plane.

Contour integration methods include:

= direct integration of a complex-valued function along a curve in the complex plane (a contour)
= application of the Cauchy integral formula; and

= application of the residue theorem.
DJG 55



Green’s Theorem in the Plane (114)

O Let P(x,y) and Q(x,y) be continuous and have continuous partial derivatives in a region R and on its boundary C.

Green’s theorem states that

y 4 f(2)is analytic

Pdx + Qdy = G_Q — 6_P dxdy
{ (&%)

The theorem is valid for both simply- and multiply-connected regions. \J .

We can simply replace the P and Q with u and v to get a better visualization

A

O Let u(x,y) and v(x,y) be continuous and have continuous partial derivatives in a region Rand on its boundary C.

v au
f udx + vdy = ﬂ — — = dxdy
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Cauchy’s Theorem. The Cauchy—Goursat Theorem (125)

Q. Prove Cauchy’s theorem gﬁc f(z)dz = 0if f (2) is analytic and continuous at all points inside and on a simple closed
curve C Or Prove Cauchy s theorem for simply connected region.

\ f(2)is analytic

Solution:

Let us consider, f(z) = u + iv,where z = x + iy and u and v are function of x and y.

y 4
R
Since f(z) is analytic and has a continuous derivative, so we can write -
ou ov  ov u using C — R equations \J
fi(2) = dx tie =5, ou OJv ou v ‘

dx dy 0dy .
dx 0dy dy 0x

The given contour integration can be written as,
f f(z)dz = f (u+iv)(dx+idy) = f udx — vdy + ijg vdx + udy
C C C C

Now, using Green’s theorem

dv  du dxd +U du v dxdv = 0 using C — R equations
- xdy ox ay) Y= 9 q
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Cauchy’s Theorem. The Cauchy—Goursat Theorem (page 129)

Q. Prove the Cauchy—Goursat theorem for multiply-connected regions.

Proof:

We shall present a proof for the multiply-connected region R bounded by the simple closed curves C; and C, as indicated in
Fig.

Construct cross-cut AH. Then the region bounded by
ABDEFGAHIJHA is simply-connected, So

f(Z)dZ =0 E

ABDEFGAHIJHA

= f f(z)dz + f f(z)dz + f f(z)dz + ff f(z)dz=0
ABDEFGA AH HIJH HA

= f f(z)dz + % f(z)dz =10

ABDEFGA HIJH where C is the complete boundary of R (consisting of ABDEFGA and HIJH)
traversed in the sense that an observer walking on the boundary always has the
region R on his/her left.
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Cauchy’s Theorem. The Cauchy—Goursat Theorem (page 129) (only focused on the results)

Note:  Singe,

f(z)dz + f f(z)dz=0

ABDEFGA HIJH § F c
Now, if we take the integration on contour €4 as positive sense
= ff f(2)dz + ff f(2)dz=10 i and on the contour €, as negative sense as shown in figure, then
Cq Cy i
i $ 1)z = § fG)dz
= éf(z)dz = — jg f(z)dz i 1 z
¢ ¢ : Outer contour integration = Inner contour integration
1 2 !
i Similarly,
$ f@dz = §, f(2)dz+§, f(2)dz+§, f(2)dz
i C1 a




Cauchy’s Theorem. The Cauchy—Goursat Theorem (page 132)

Q. Evaluate gﬁc Zd_—za where C is any simple closed curve C and z = a or z = z, is (a) outside C and (b) inside C.

Solution: Here, the given function f (z) = ﬁ has a singularity at z = a, so the function is blows up at this point and
hence it is not analytic at z = a. C

(@) If z = a is outside C, then f (z) = ﬁ Is analytic everywhere inside and on

C.
dz

Hence, by Cauchy’s theorem fﬁ T o 0

C

(b) Suppose z = a is inside C and let " be a circle of radius € with center at z = a so
that I is inside C.

We can write | Thus, since dz = iee'®d#, the right side of
i (1) becomes
i 21 .
f z__ f z_ (1) i dz ice?dn
Z—a Z—a i f = f 0
C r i Z—a €e
L C 0
Now, on T | 21
l = ¢ idf
|z —al =€ Equation of the circle ! ;f
= |z —a| = €|e'?| Since, |e?|=1 i = i2m or 2mi

>z—a =ce'® Here,0<0<2m This is the required contour integration value. DG 60



Cauchy’s Integral Formula

07-09-2021 Integration of real fn using CRT



2. Cauchy’s Integral formula (page 144)

Statement (Cauchy’s integral formula)

O Let f (z) be analytic inside and on a simple closed curve C and let a be any point inside C. Then

1 [ f@ !
f(a)_Z_TL'iC (Z_a)dZ y
where C is traversed in the positive (counterclockwise) sense. When, n = 0 we get

(This is a special case)

Also, the nth derivative of f (z) at z = a Is given by

n! f(2) 1 x
n — —
f (a) - 27Ti C (Z _ a)n+1 dZ Where’ n - 1, 2, 3, 4-, 5, LN

Q. What is the significant of this formula? Or Why it is so important?

Forward : If a function of a complex variable has a first derivative, i.e., is analytic, in a simply-connected region
R, all its higher derivatives exist in R. This is not necessarily true for functions of real variables.

Backward : If a function f(z) is analytic in a simple closed curve C, then we can find the integration of a function

G(z) suchthat G(z) = ( Zf (_Zzl) . The required integration will be
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2. Cauchy’s Integral formula (page 144)

Q. Evaluate ¢

Cza

Solution: (b) We know that
f(2) 21l

; (z—a)"“dz = f™(a) XW

dz
The given integration gSC (Z—a)o+ 1

Now by comparing with Cauchy’s integral formula
flz) =1

n=20

So, the required integration

j{) dz 211
=1X—
Z—a 0!

DIG

—— dz where C is any simple closed curve C and z = a or z = z, is {a)-outside-C-and-(b) inside C.

When you become expert in this course

Using Cauchy integral formula

f(2) 2Tl
ﬁ; (Z—a)0+1d 1XT
(Zf(_ zl) Z = 2mi

This is the required integration.
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2. Cauchy’s Integral formula (page 149)

ZZ y 4
dz where C is the circle |z]| = 3.

C

Q. Evaluate gﬁc Z11)4

Solution: Since, Cauchy’s integral formula

A

£(2) . 2mi x
§ e =M@ x
By comparing the given integration with Cauchy’s integral formula
211l . . .
zZ = X T —(i e point ‘a’ is outside
Tk 3(-1) (i) If the point ‘a’ is outsid
C the region then we can
directly used Cauchy’s
Now, theorem and will get the
£(2) = e? The required integration from equation (i) results as ‘0’ i.e
2z
=  f/(2) =2xe?* 27T € dz =
dz=8xe % x — z4z=0
> fl(2) = 4 x e 7€(z+1)3+1 ZTene 7T J (z+1)
C
= f///(z) = 8 X 2% 8y e-?x 211
= f/ll(-1) =8xe™? 3% 2
8 mi
32 DIG 64



Homework

(sinmz?+cosnz
Q. Evaluate 45

2
) - - = —
C~ (z-1)(z-2) dz where C is the circle (a) |z| = 3 and (b) |z| =2.

Solution:  Since, Now,
1 A B : =
_ z-1D(z-2) (-1 (z-2)
(z—1)(z—-2) (Z—1)+(Z_2) 1 1 1
1 _A(z—2)+B(z-1) z-1D(z-2) (z-2) (-1

z-1(z-2)  (z-1D(z-2)

1=A0Z-2)+B(z—-1)

So the given integration becomes,

(sinmz?+cosmnz?) (sinmz?+cosmz?) (sinmz?+cosmz?)
When, z = 2, we get G-0e-2 kT G- LT @b
1 = B(Z - 1) . - - . 2 2 -
Since z = 1 and z = 2 are inside or on C and (sinmz“+cosmz* is analytic
=>B=1 inside C.

When, z = 1, we get
1=A(1-2)
=>A=-1
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Homework

By Cauchy’s integral formula

f (sinmz%+cosmz?)

Z-Dz-2) dz = 2mi [(sin(r2))? + cos(m2)?] — 2mi [(Sin(n))2+ Cos(n)z]

sinmz?+4cosmz?
7€ ( )dz = 2mi — 2wi(—1)

(z-D(z~-2)

dz = 4mi

f (sinmz?+cosmz?)

(z—1)(z—-2)

This is the required integration.
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2. Cauchy’s Integral formula (page 146)

Q. Let f (2) be analytic inside and on the boundary C of a simply-connected region R. Prove Cauchy’s integral formula

fla) = @ 4 or = llf f@id “

 2mi ¢ (z2—a) 2ni J. (z — a)*t? y

C

where C is traversed in the positive (counterclockwise) sense.

equation (1) becomes 0
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Solution:
The function z—a) Is analytic inside and on C except f@)dz Zﬂf(a t eet®)icei®dg | _—
at the point z = a . Now we can write, i z—a celf
i C 0
f(z)dz [ f(z)dz 1) i 27
’ Z—da : zZ—a E =iff(a+eei9)d0 ----------- (2)
L .0 . . .
Now, on I i Taking the limit of both sides of (2) and making use of the continuity
|z —al =€ Equation of the circle  0f T(2), we have .
= |z —al = ele®| Since, |e®|=1 img [ 1imif f(a+ee®) do
. i e-0 ). zZ—a €-0
=z—a =ee® Here,0<0<2n i 0
i 27
. 8 . . ! f(z)dz [ i0
Thus, since dz = iee'” d@, the right hand side of i S . lmé f(a+e€e'”)do
: c 4= -



2. Cauchy’s Integral formula (page 146)

f(z)dz s Now, differentiating eq. (3) w.r.t a, we will get
= lf lim f(a + €e'®) do
c Z2—4a s €70 /(a) = 1 f(z)dz
27 f - 2mi ), (z-—a)?
- if f(a) do Again, differentiating eqg. (3) w.r.t a twice, we will get
0
= 2mif (a) £11(a) = f(z)dz
2ni ). (z—a)3
so that we have Hence after differentiation eq. (3) n number of times we will get
f(z)dz n! z)dz
f@=5—¢ T2 e © (@) = @

2ni ), z—a 2mi ), (z —a)"!

This is the required Cauchy’s integral formula This is the general form of Cauchy’s integral formula.
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2. Cauchy’s Integral formula (page 149)

e?(z*+1) i i A
Q. Evaluate ¢, 1z dz where C s the circle (a) |z| =2 y 2] =2
C
- ZO =
Solution: Since, Cauchy’s integral formula I d
£(2) ) 2mi ) S
; (Z_a)n+1dZ—f (Cl)XW
By comparing the given integration with Cauchy’s integral formula
e?(z? +1 21l : : :
( 1+3 dz = f1(1) x TR — —(1) If the integration is
C (Z - 1) 1 eZ(ZZ+1) d h h
$. oz 4z then the
Now, point ‘a’ or z, is outside
The required integration from equation (i) the region. So, we can
— pZ (2
f)=e’(z"+1) directly used Cauchy’s
= f(2) =e?(2z) + e?(z% + 1) e?(z% + 1) 27i theorem and will get the
(z — 1)i+1 dz =4e X — - results as ‘0’ i.e
=  f/(1)=e'(2) +e'(1%2+1) . -
e?(z*+ 1)
= 4e = 8mie dz =
(z - 1)?
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2. Cauchy’s Integral formula (page 150) (not important)

Q. Prove Cauchy’s integral formula for multiply-connected regions. "

A
\ 4

DIG 70



Homework

Q. Evaluate 456 (22 ) dZ where C is the circle (a) |z — i| =1 and (b) |z| =2. (2017, 2+2=4) o
Solution:  Since. ¢ 2=l Y1
i C
z—1)  (z—-1) ®: ® z-=
(ZZ+1)_(z+i)(z—i) ‘ ) /R/\\
1[(z=1) (-1 ’

“2ilz=0) G+

So the given integration becomes,
z—1) jg (z—l) (z—l)
(z% + 1) T2 (z — 1) c (z+ l)
C

(a) When the region is|z — i| =1, it is found that the singular
point z = —i is out the region, therefore

(b) When the region is|z| =2, it is found that both the
singular point z = —i and z = i is inside the region, therefore

Z—1) (Z—l) (Z—l)
(ZZ+1) Zlf (z—1) dz == c (Z+l)

[2m(l —1) —2mi(—i —1)]

21

dz — 0| Here, f(z) =z—1

z—1) p 1 (z—1)
J (z2+ 1) “T2 c (z-1)

1 _ , .
=5 2rixf@O]  =n@i-1)

= 2T



Homework

DIG 72

1
Q. Evaluate 456 - dZz where C is the circle of unit radius. (2017, 2)

Solution:  Using Cauchy integral formula

1 Q7 = 1 2l
i z -0 = X or

1
= jL —dz = 2mi
c Z

This is the required integration.



Residue theorem
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5. Residues and Residue Theorem (page no. 162)

Q. (a) Let F(z2) be analytic inside and on a simple closed curve C except for a pole of order m at z = a inside C. Prove

that
dm—l

1 _ 1 _
i} F(z)dz = lim Gn Dl {(z—a)™F(2)}

Not analytic

(b) How would you modify the result in (a) if more than one pole were inside C? _
Analytic

Solution: (a)

If F(2) has a pole of order m at z = a, then F(z) = f(z)/(z — a)™ where
f(z) is analytic inside and on C, and f(a) # 0. Then, by Cauchy’s integral

formula,
1 1 f(2)
21l ) Fz)dz = 2ni ), (z—a)y™ dz < " >
D (a) "

T (m-1)!
1 m-1

= =1 a1 J (2)) _ .
1 gm-1 Here, R is called the residues of F(z) at

I o= gyt (AT @) il
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5. Residues and Residue Theorem (page no. 162)

Z(,2
Q. Evaluate ¢ = (z7+1)

t (z-1)? dz where C is the circle (a) |z|] =

Solution: Here, the pole z = 1 or a = 1 is inside the given region and the pole is order 2 i.e. m = 2.

Now, from Cauchy’s integral formula

1 | dm! m
T, PO = I s (- "R )
y 1 dm—l .
= f F(z)dz =2mi X lim 1) a7l {(z—-a)"F(2)}
e?(z% + 1) 1 a1 e?(z?+1)
:f =12 dz—2m><£1_>n}(2_1)'d21{(z—1)2 = )2}
= 2mi X y_r)n E{ez(z + 1)}

= 27l X lim {e?(2z) + e%(z? + 1)}
=2mi X {e!(2) + el (1% + 1)}

= 8rie
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5. Residues and Residue Theorem (page no. 162)

(b) Suppose there are two poles at z = a, and z = a, inside C, of orders m,and m,, respectively. Let I'; and
I, be circles inside C having radii €; and €, and centers at a; and a,, respectively. Then

Cy

1 1 1 1
— F = — F —¢ F(2)dZ —————_ _ __ (i
o], (z)dz 2ni ., (z)dz + 2 . F(z)dz (@) y

&

If F(z) has a pole of order m, at z = a4, then

f1(2) : :
F(z) = 7 —1a1)m1 where f; (z) is analytic and f;(z) # 0 .
If F(z) has a pole of order m, at z = a,, then
F(z) = e J zng))mz where f,(z) is analytic and f,(z) # 0
- U2
So from equation (i)
1 _ 1 f1(2) 1 f2(2)
2—7_”, . F(Z) dz = - " (Z — al)ml dz + i " (Z — az)mz dz
. 1 dm1—1 . . 1 dm2—1 .
= Jim =1 gt (T @) F@  lim e T (e — a) ™R ()
- R1 + Rz
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5. Residues and Residue Theorem (page no. 162)

So we can write
jé F(z)dz = 2ni(R{+R,)
C

where R,and R,are called the residues of F(z) at the poles z = a, and z = a,.

In general, if F(z) has a number of poles inside C with residues Ry, R,, . . ., then

f F(z)dz = 2ni(R{+Ry + --+)
C

= 2mi (sum of the residues)

This result is called the residue theorem.
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Q. Evaluate ¢

Solution:

6. Residues and Residue Theorem (page no. 162)

Z

C Z2int)? dz where C is the circle (a) |z| =4.

The poles of

zZ VA

e B e
(z2 +12)2  (z+im)%(z — im)?

are at z = +im inside C and are both of order two i.e. m = 2.

Now, residue at z = i IS

1 d
lim — —{(Z — im)?

z-in 1! dz

eZ
(z + im)?(z — in)z}
Similarly, residue at z = —im is
1 d

. . . 2

eZ
(z +im)2(z — in)z}

Therefore

eZ
f 22+ n9)? dz = 2mi (sum of residues) = 2mi (
C

T+
4173

T— I
4173

m+i

wT—1

4173 T

4173

)

l
T
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6. Residues and Residue Theorem (page no. 162)

Q. Obtain the residue of the following

1. f(z) = Zziazwhere a>0 2018, marks: 4
No need to submit. Just do it yourself as
2. f(z) = Zef _atz = ia 2017, marks: 2 practice.
Z a
3. f(z) = (zi)z at its pole 2015, marks: 2
4. f(z) = (Zf;g at its pole 2013, marks: 2
2
4. f(z) = (1+ZZZ)3 at its pole 2020, marks: 3

Q. For a function f(z) which has a pole of order m at z = z,, show that the residue of the function at that singular point is

. 1 dm—l
1= (m—1)! dzm-1 {(

Z - Q)™F(2))

Note: Here, since marks is 5, so it is recommended that you should start from Cauchy’s integral formula.

DIG

2013, 2015, marks: 5
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Taylor Series
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Power series (only for concept)

Power Series:

O In mathematics, a power series (in one variable) is an infinite series of the form

co

Zan(x—a)” =ay+a;(x — ) +a,(x —a)*+-+ 0 ———————— —(1)

n=0

where a,, represents the coefficient of the nt* term and a is a constant.

U In many situations a (the center of the series) is equal to zero, for instance when considering a Maclaurin
series. In such cases, the power series takes the simpler form

co

z a, ()" = ag + a;x + ax* + -

n=0
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Taylor’s theorem (only for concept)

Taylor’s theorem:

If £ (x) is differentiable in region, then f(x) can be expand around a given point a as

(@ 1@
2! 3!

f(x) = f(a)+ f/(@)(x —a) + (x — a)?+ (X — @)3+

- Z : n(!a) (=)
n=0

=Y @ (x—ayn

n=0

This is also called as power series.
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Taylor’s theorem (only for concept)

Example: Any polynomial can be easily expressed as a power series around any center a.

For example f(x) = x? + 2x + 3 can be written as a

(a) power series around the center a = 0 as

/(q /] (a
F0) = f@+ @G-+ 2 - ap e S e @ =3
// /1/ 100) = =
=f(0)+f/(0)x+f 2(10) ! 31(0) + e SRk
' //
=3+2x+x2+0+0+ - fz('o)=(2)2“=°=1
=3+ 2x + x? |
(b) power series around the center a =1 as
/11
FO0) = £ + /G - D) + 122 - 1y F) =6
=6+4(x—1)+(x—1)2+0+0 /(1) =4
=6+4x —4+x°>—2x+1 f//(l):1
=3 + 2x + x2 2t
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4. Laurent and Taylors expansion (only for concept)

> Since, here

Fle) = f11G) = 1) = e

O Let represent the exponential function f(x) = e* by the infinite polynomial (power series).

fx) =e*

fo(x) =1

and
f/(O) = f//(O) = f///(()) = e0 =1
f2(x)
Now, the function can be represented as a power series
. - . fn(a) 1 f4(x)
using the Maclaurin's formula with a,, = —— ==
! ! ’
. — 7 x x% x3 x™
e =zm=1+ﬁ+a+§+“'+ﬁ+“' —
n=0
;(;?x) \ series f3(x) fi(x)
S
fi(x) ,
\ V / — Sequence’s term

07-09-2021 f;((x) DIG




4. Taylors expansion

Tavlor’s theorem:

If f (2) is analytic inside a circle C with center at a, then for all z inside C ¢
// /1/
F@) = f@ + @ -a) + 22 @ - 02+ L5 - s
f"(a) n
B n! (z=a)

= Z a, (z—a)" This is a power series
n=0

This is called Taylor’s theorem and the series is called a Taylor series or expansion for f (z).

The region of convergence of the series is given by |z — a| < R, where the radius of convergence R is the
distance from a to the nearest singularity of the function f (z). On |z — a| = R, the series may or may not
converge. For |z — a| > R, the series diverges.

If the nearest singularity of f (z) is at infinity, the radius of convergence is infinite, i.e., the series
converges for all z.

If a = 0 in Taylor series, the resulting series is often called a Maclaurin series.
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4. Taylors expansion

Some special series:

The following list shows some special series together with their regions of convergence

z? z3
Z_ b — ee e
l.e —1+Z+2!+3!+ |z| < o0
. AR 2] < oo
2.sm(z)_z—§+§+...
2,4
3.cos(z)=1—§+z+... |z| < o0
z? 73
4.In(l+2)=z——+—+ - |z| < 1
2 3
—1
5-(1+Z)p=1+PZ+p(p2—,)zz+--- lz| <1
s L1442 4254 1z] < 1

1-z
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4. Taylors expansion (page number 184)

Taylor’s theorem Proof: Let z be any point inside €. Construct a circle €; with center at a and enclosing z.

Then, by Cauchy’s integral formula,
1 fw)

f(Z) — 2_7'[l (W — Z) dw - —————— _(1)
n f(w)
We have Fr@ = Zﬂljé (w — z)n+1 —————— —(2)
1 3 1 1 .
(W_”_OWﬂ”‘@—a>zﬂw—a%}_@—ay }
(w —a)

T w-0a)

-l G G e B e () G )

1 zZ—a Z—a\? z—a\"1 /z—a\® (z—a\" [z-—a\"?
() G e G G G G
w—a w—a w—a w—a w—a w—a

(W —a) {1 + Z - a Z - C;)Z Tt (vzv_—c(;)n_l + (\/Zv_—cclz)n ll _(z- ;)/(W - a)]}

z—a z—a2 z—a\"1 /sz—a\"(w—aqa)
1+ ) +...+( ) +( )
07-09-2021 (W—a) W—a w—a w—al (w—2) 87



4. Taylors expansion

Twea) w-a? w-ap Twoan

_ _ 2 _ n—1 _ n
1 Z—a (z—a) (z—a) +(z a) r 3

w—al/ (w—2z)

Now, multiplying both side of equation (3) by f(w)/2mi and taking contour integration, thereafter using equation
(1) we get

1 f (W) (z—a) (z—a)" " f(w)
f&) = 2mi ¢, (W= a) 2mi (W — a)2 o ¢, W—a)" dw +Up —===== -
Where
1 Z—a f(W)
Un = 2mi ¢ (W—Cl) (W—z)
Now, using equation (2), equation (4) becomes
// /11 n-1
f@) = 1@+ @G-+ 52 e -t g2 e - o B e ey, e -
If we can now show that Tllinc}o U, = 0, we will have proved the required result. To do this, we note that since w is
on Cy,
Z—a

Where y is a constant. DJG 88



4. Taylors expansion

Also, we have |f(w)| < M, where M is a constant, and
w—zl=|Ww-a)—Gz-a)|lzr —|z—a4d|

where r; is the radius of C;. Now taking modulus of U,, we have

1Unl :% jécl (vzviC;) (v]:/(iV)Z) v

n1Fw)l
w—2) 3€C aw

1|1z—a

2wlw —a

I
5.

Now, taking the limit, ,li_{{)‘owﬂ' =

So from equation (5)

f//()

(x —a)*+

f@)=f@+f/(@x-a)+

i f(z)dz

L@

iy L

where |f(2)| < M, i.e.,, Mis
< ML  an upper bound of |f(z)| on
C, and L is the length of C.

Or simply
1z1 + 23| < |z4| + |z,]
12+ (=3) < [2] +|-3|
-1 <243
1<5

Hence proved



Radius of convergence

Power series Now, using using ratio test,

N N L = lim L1
2 an(Z—ZO)n — z Zn n—oo Zn
= =0 Ratio test
L A zmz™ Let lim Snil — 1 Then YU,
= lim n-co 1 Un
Circle of convergence n-o | ap(z2—2p)" converges if L<1 and diverges if L>1.
If L=1, the test falils.
. An+1
z = lim |z —z|
n—>0o an

So according to ratio test the power series will
be convergence when

. |9n+1
.. L = lim |1z —zp| < 1
The power series is convergence when the n-oo | a
reference point (z,) about which we do the
=[XR<1

expansion is such that

|z =2o| <R ~ Radius of convergence R = 1
Here, the R is called radius of convergence.
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4. Taylors expansion: Numerical

Ql.Letf(z) =In(1+ z),then (a) Expand f(z) in a Taylor series about z = 0.
(b) Determine the region of convergence for the series in (a).

(c) ExpandIn (1 + z)/(1 — z) in a Taylor series about z = 0.
Solution: We know the Taylor expansion

/! /1/
F@) = @+ @@ -+ 22 2 - a4 LD g -
(a) We need to expand f (z) in a Taylor series about z = 0. So,
// /11
f(2) = f(0)+ f/(0) z +f2(!0)zz+f 3!(0)23+"' —————— —(1)
Now,
Now, from equation (1)
f(z) =In(1+ 2); f(0)=0 £/1(0) £111(0)
L f@=f0)+f/(0)z + z% + z3 4 -
(@) =1/ +2); floy=1 | 2! 3!
i ZZ ZB Z4
(@ = -1/ + 2% froy=-1 | =0tz oty gt
@ =C0ED/a+2% flo=20 =7 - Z; ¥ 233 - Z: ¥

FED(2) = (D" nl /(1 + 2)T*D;

FE©) = (- )" |
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4. Taylors expansion: Numerical

f(z)=ln(1+z)=z—z2 T2

(b) The nt™ term of the Taylor expansion is U,, = (—1)™®"1z"/n. Using using ratio test,

Z

Un+1 nz

lim

n—>0o

n

and the series converges for | z | < 1.

(c) From the result in (a) we have, on replacing z by —z,

z%2 73 Z4
In (1 = — ..
n(l+z)=z > + 3 2 + -
Z2 Z3 Z4
In(1—2)=—
n(1-2) 2 3 4

both series convergent for | z | < 1. By subtraction, we have

1 142 2 + +Z i
n(l )_ (Z 5 -

Which convergesfor | z| < 1

2n+1

2n+1

Ratio test
Let lim [ =L . Then YU,
n—00 n

converges (absolutely) if L<1 and
diverges if L>1. If L=1, the test fails.
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4. Taylors expansion: Numerical

Q1. (a) Expand f (z) = sinzin a Taylor series about z = m /4.

Solution: We know the Taylor expansion

/(a e
F@ = f@+ fl@z -+ 22 - ap L5 D g - -
We need to expand f (2) In aTaonr series about z = n/4. So,
/1 ( e
F@) = Flr/a) + e/ —m/4) + 02 (o gy D g e ey

Now, :
Now, from equation (1)

f(z) =sinz ; f(m/4) =~2/2 E f//( / )

sinz = f(n/4) + f/(n/4)(z — /4) + (z —m/4)%+
fl(z)=cosz;  f(m/4) =V2/2
i \/— \/— V[ \/E T\ 2 \/E n
fI1@) ==sinz;  fla/4)=—V2/2 | T2 (322 -E) —ame- P
f/l(z)=—cosz; f(m/4)=—2/2 | V2 o~ 1 2 _
7 (g3 s

07-09-2021 DIG



4. Taylors expansion: Numerical

Q1. (a) Expand f (z) = 1—; in a Taylor series about z = i. Also find the radius of convergence.

Solution: We know the Taylor expansion
f“/( a)

f///( @)

f@)=f(@+f/()(z-a)+ (z —a)*+ (z—a)’+
We need to expand f (z) ina Taylor series about z = i. So,
// /11
O O L s R (1)
Now, :
i Now, from equation (1)

_ . N . i _ N2
f@)=1/1-2z f)=1/1-i f(z)=%1+i i (i 1)2
Fl@)=1/A-2% =11~ | L BERIMEED
1@ =2/1-2% fl@)=2/0-0i)7 | _ i (z=D)"

- 4a-om
(@ =3YA-2% fIIIG) =31 -D* | =0 ]
: = Z an(z — )" T @

1
07-09-2021 DIG n=0
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4. Taylors expansion: Numerical

The required Taylor’s series Is
1 Ratio test

= — )" —
f @) ;a"(z ) Un = (1 —i)n+l Let lim |2 =L . Then YUy,
= n—0oo n
: : : converges (absolutely) if L<1 and
Now, using using ratio test, diverges if L>1. If L=1, the test fails.

. An+1 . . 1+
= = = lim
L e, | TR [T T e | @ DA - D)
|1+ |
| 2
1
W2
So, the radius of convergence. ‘
1
R = T - \/2
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4. Taylors expansion: Numerical

Q. Find the first three terms of Taylor expansion of f(z) =1/, ,about z = —iand give the region of
convergence. 2021
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|_aurent Series
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4. Laurent’s Theorem (page number 187)

Laurent’s theorem:
Suppose f (z) is analytic inside and on the boundary of the ring-shaped region R bounded by two concentric circles
C; and C, with center at a and respective radii r; and r, (r1 > r2) (see Fig. 6-5). Then forall z in R,

Principal part + Analytic part
F@ =) an@=2)"+ ) anz—2 )"
n=0

n=1

(4

a_ a_ a_
= ... 4 n + n+i + -4+ 1

(z = 2 )n (z -z, )n_l Z= 2%

+ag + ay(z — 2z, )1 + -

Where
fw)
i 27uj£ (w — a)"+1 n=20123....
J00) n=123....

@-n 2m¢ (w—a)~ 1 4

Laurent’s theorem proof: (Assignment) (Marks:15)
07-09-2021 98




4. Laurent’s Theorem (page number 187)

Q. Find Laurent series about the indicated singularity for each of the following functions

sinz sinz
1f(z)—— z=20 Zf(z)—— z=20
1. solution.: 2 solution.:
Sinz sinz
f2)=— f@y-——
1 z3 N z° .. 1 z3  z°
=7 Z 317 5 EE Z-—'§T-FE§“+
z2 7z 1 z z3
=1 —-——4+—4.. - -
TR TR

= No principal part

So, this is removable singularity So, isolated singularity of order 1

yi

07-09-2021 i !

i 2Z
3.f(2) =(z—1)3; z=1
- 3. solution.:
Lletz—1=u.Thenz=u+ 1 and
é eZz
SOy
| p2(u+1)
O
2
_2 o
62 (2 )2
==a§ 14+ 2u+ o1
3 e? 2e? 2e? 4e2 22 )
- teon T3 T e

z = 1 is apole of order 3, or triple pole. The
- series converges for all values of z # 1.

99



4. Laurent’s Theorem (page number 187)

1 . - -
Q. Expand f (z) = na_zna Laurent series valid for 1 < |z] < 2

Ans.: The given function

1 1
— . 1 — 2 3 LN
(z—-2) (z—-1) 1_Z—1+z+z +z° + |z] <1

f2)=

Here, the given region

|z]| < 250 % <1
and
1
|Iz| >1s0 —<1
|z|
1 Z Z\ 2
We have to remember these two f(z)= —5 1 +§+ (E) + -
condition while expanding the function )
Now, _ (WY 11z 2
) 1 1 o\z A z 2 22 Z3
f Z) = 7 — 0% (0'0)
DM -3 21—
Z — —n — —n_|_ n _ n
Za (z—12y) Za (z—12y) .

07-09-2021
n=1 n=0



Consequences of Cauchy Residue Theorem
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Evaluation of definite integrals

O The evaluation of definite integrals is often achieved by using the residue theorem together with a suitable
function f (z) and a suitable closed path or contour C, the choice of which may require great ingenuity.

The following types are most common in practice:

21T

1. j F(sind@, cos6)do : where F(sin@, cosf) is a rational function of sin6 and cos®.
0
+ 00
2. j F(x)dx : where F(x) is a rational function.
+ 00
3. j F(x){ sinmxe Jdx ;where F(x) is a rational function.
Convert the rational Choose a suitable contour Use CRT to solve the
function into a suitable > C to apply CRT > problem
complex function i.e. F(z)

07-09-2021 Integration of real fn using CRT



Evaluation of definite integrals: [ F(sin8, cos§)d6

21

do
Q. Evaluate j

5+ 4sinf

so that

) dz

2T
Solution: 5+4sinf  J 5+4.(z—z"1)/2i
0 C

Let z= et?. Then we know

! dz
10 —i6 — i = — d _________________ 1
simp =S¢ _z=z i 5£222+5iz—2 ff(z)z 1)
21 20 i C C
0 4 ,—if g i where C is the circle of unit radius with center at the origin as shown in fig.
e e Z+z i
6 = — |
o0 2 2 i Now the poles of f(z)dz
And
;= olf Y ; L —5i +/(50)2—4 X 2 X (=2)
///// _“s Z = ele i 2 X 2
4 _ iet® / 5 4+ 3§
do / \ ] - —5i + 3i
d = . =7
= d@ — Z ‘\\ ll X : 4‘
et : 1
dz 7 i z=——=1i,—2i

¥4 Integration of real fn using CRT



Evaluation of definite integrals: [ F(sin8, cos§)d6

Therefore we get two poles y
1 1 : -1 i
Z]_:__l ZZZ—Zl ,lz’ .. z=e¢e
- - - 4 \‘
But out of these two, only z; lies inside C { ;
\ 1 ,l
- 1. ‘\\ .__l Il X
Now residue of f(z) atz; = — S 2,0

1 d‘m—l

- le_)r?1 (m—1)dm-1

Res [f(z), (30 ]

(z-a)"f(2)}

_ 1 a1 ! 1
_er_n%iu— Datt\* " 2") 222 45iz-2
1 1

= lim1 <Z+§i>. T

— 2 x (z 4 7i) (z +20)

1

= lim .

Z—>—%i2(z + Zl)
1

2(— 5+ 2i)

Integration of real fn using CRT

}

1 1
Res [f(Z), (_El)] = a

Now, apply Cauchy residue theorem,
from equation (1)

2T
f dé B j@ dz

5+ 4sin@ ) 2z2 + 5iz — 2
0

C

1
= 2mi X Res [f(z), (_Ei)]
= 2mi X !
AT
_2

This is the required integration.



Evaluation of definite integrals:ff;" F(x)dx

o0 y
< Suppose the given integral is f_+oo F(x)dx r
z = Re'®
= Consider gSC f(z)dz along a contour C consisting of the line along the
x axis from —R to +R and the semicircle I" above the x axis having this X
: ) > >
line as diameter. —R +R

Step 1: F(x) = F(2)

Step 2: Choose the contour i.e.

+R
F(z)dz= | F(z)dz + F(x)dx
p o= s |
n +R
21 X Res|F(z),z, | = | F(z)dz + F(x)dx
rerra) = | res |

Step 3: We will take limit R — oo. After taking
limit we will found that

}%im F(z)dz=0

r
This implies that
+R
lim
R—o0
—R
+00

= j F(x)dx = 2mi X z Res[F(z),z ]

— 00

F(x)dx = 27i X z Res[F(2).z; |

This is the required integration




Evaluation of definite integrals:ff;" F(x)dx

Q. Evaluate J (x6 D

Solution:

z = Re'?

where the contour C consisting of the line along the x axis from —R to +R and the
semicircle I' above the x axis having this line as diameter.

Now poles of f(z) = 1/(z° + 1) are (i.e. solution of z6 + 1=0)

em/6’ 63711/6’ eSm/6’ 877”/6, e9m/6 and ellm/6

Out of these 6 poles only e™i/6, 3m/6 gnd e5™i/6 gre lies inside the contour.
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+R



Evaluation of definite integrals:ff;" F(x)dx

Now residues at poles e™/6, ¢37i/6

Res[f(2),(e™/®) ] = lim
B z—>leI71[ll/6§
— le—Sni/6
Similarly
Res|f(z), (e3™/6) | = hm
and
Res|f(2), (e°™/®) | = lim

and e

. 1
z—eTi/6 {(Z m/6)'Z6 + 1}

5mi/6

L'Hospital's rule

. 1
37u/6 1
e3Ti/6 {(Z ) z% + 1} 6 —5mi/2

6

1 1 .
. 5 —
im {(Z _ m/6) pra 1} — Z p—25mi/6

Integration of real fn using CRT

If lim—= @) undetermined i.e.

z—c 9(2)

e
z-c g(2)

0

OOT‘

lim f(2)
z-c g(z)

Then lim—= 1) can be written as

z—c 9(2)

@)
Z—C g(Z)

im L @
z-c g'(2)

26 = (e™/6)6= i = cos(im) + isin(ir) = —1

0.0)
0.0)



Evaluation of definite integrals:ff;" F(x)dx

Thus, from Cauchy residue theorem

dz . I
= = iRele .
— io
f i = 271l {le—Sni/6 + le—Sni/Z +le—25ni/6} do Z = Re
a (26+1) 6 6 6 $d2=iR€i9d9 y
“R” > +R

dz
§{> 1D = 2mi{—c0s30 — isin30 + 0 — i + cos30 — isin30}
C

+R
=>f z_, j v _Zr (1) |iRe dg)|
_— = — |  mmmemememmmme———————— Lne
z®+1 x6+1 3 < ;
J ( ) kA ( ) or |L|< 680 1 1| — convergent
T
2T
= Il +12 = ?

eg.15—3—1| <{[5| +[-3] + |-1[}

Therefore when the limit R — oo, then I; becomes

Now

L J dz J iRe'®do
V7 ) (z8+1) ] Réeied +1
r r

lim [11] = 1 |iRei9d9| —0
Rl—l;{alo 1 _Rggole6ei69+1|_
r
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Evaluation of definite integrals:ff;" F(x)dx

Now taking limit on both side of equation (1)

+R

. j dz + j dx _ 2T

RSe) @5+ 1)  Roe ] 6+ 1) 3
r —-R

R—o0o0 3

+R
= 0+ li j dx __2n
S )] e+
—-R

+00
. j dx  2m
(x6+1) 3

This is the required integration.

+ 00

Al f dx m
0 ] s+ 1) 3

— 00
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Evaluation of definite integrals: [*" F(x){ snme Jdx

em

+ 00 y
cosmx dx
Q.Evaluate > where m > 0. r
7 (x=+1)  — Roif
Solution:
X
Consider R > > TR
+00 .
cosmx dx e dz
x2+1) ) (z2+1) -
— 00 C
1 , +R +R
Where C is a contour as shown in figure. J e . [ cosmx . . _sinmx o m
: _ eimz _ L | (z2+1) (x%2+1) (x%2+1) e™
The function f(z) = D has simple pole at z = +i PoT “R R
Out of these two poles only z = +i lies within the contour € Here
Now, from Cauchy residue theorem ! Jimz R .
eimZ i f (ZZ n 1) dz + f (xz n 1) dx = e_m
3€ 1D dz = 2mi X Res[f(2),1) ] i r —R
C i T
i = Il +12 =/~  mmmmmmmmmmmmmeees (1)

eimz TR eimz eimz
= 2mi X | — ).
j(z2+1)dz+ j i ’”XZ‘E%{(Z 2 (z—i)(z+i)}
r -R



Evaluation of definite integrals: [*" F(x){ snmx

CosS mx }d

Now y
pimz o iMR(cos8+isinb) pi o6 19 I
= | ———=dz = . .
' ! (z% + 1) j R2e20 +1 7 = Relf
|imR(cos@+isin@)||p; ,i0 X
1] < j e | |Rle |d9 > >
J |R22i0 + 1| —R tR
e‘RSi"GRdH e
L < .
1] J |R?e21% +1]

Therefore when the limit R — oo, then I; becomes

lmZ T
f x2+1) 1) T em

llm |11 = lim

R—0o0

J ‘RSi"QRdG
|R2 216 + 1|

Now taking limit on both side of equation (1) This Is the required integration.

lim dz + lim

et™m? el
v —  dx =
R—>00_[(Zz+1) R—c ] (x%2+1) X em
r R
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