Mathematical Physics III

PHY-HC-4016

Dhruba Jyoti Gogoi

Nalbari College
Department of Physics
Dhrubag.gogoi@gmail.com

Unit I: Complex Analysis (Lectures 10)

1. Function of complex variables
2. Analytic and Cauchy-Riemann conditions
3. Example of analytic functions
4. Singular functions: Poles and branch points
5. Order of singularity
Q. Plot the number $e^{\left(1+i \frac{\pi}{6}\right)} \cdot(2017$, mark: 1$)$

$$
\begin{aligned}
& =e^{\left(1+i \frac{\pi}{6}\right)} \\
& =e^{1} \times e^{\left(i \frac{\pi}{6}\right)} \\
& =e^{1} \times\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
\end{aligned}
$$

Here, $\mathrm{r}=e^{1}=2.718$ and argument, $\theta=\frac{\pi}{6}$

Q. Plot the number $e^{\left(1-i \frac{\pi}{6}\right)} \cdot(2015$, mark: 1$)$

$$
\begin{aligned}
& =e^{\left(1-i \frac{\pi}{6}\right)} \\
& =e^{1} \times e^{\left(-i \frac{\pi}{6}\right)} \\
& =e^{1} \times\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)
\end{aligned}
$$

Here, $\mathrm{r}=e^{1}=2.718$ and argument, $\theta=-\frac{\pi}{6}$

Q. What does the equation $|z-i|=2$ represent? (2015, mark: 1)

Ans.: Here Z is any complex number.

Q. Find an equation for (a) a circle of radius 4 with center at $(-2,1)$ or $(-2+i)$. (Page no. 15, Book: Schaum's outline)

Ans.: The center can be represented by the complex no. $(-2+i)$. If Z is any point on the circle, the distance from Z to $2+i$ is

$$
|z-(-2+i)|=4
$$

This is the required equation.

\square
A symbol, such as Z, which can stand for any one of a set of complex numbers is called a complex variable.

$$
Z=x+i y
$$

Q. What do you mean by a function?

Ans.: A function is a procedure which gives a unique output for any suitable input.
The set of suitable input is called as domain of the function while the set of outputs which are possible is called the range of the function.

Now, for example, let us consider a complex variable

$$
\begin{aligned}
W=f(Z) & =Z^{2} \\
=>u+i v & =(x+i y)^{2} \\
=>u+i v & =\left(x^{2}-y^{2}\right)+i(2 x y)
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
& u=x^{2}-y^{2} \\
& \mathrm{v}=2 x y
\end{aligned}
$$

So, u and v is a function of (x, y)
i.e. $u(x, y)$ and $v(x, y)$
I
r
Z-plane

W-plane 6
Q. Write the polar form of the given complex number.

$$
\begin{gathered}
Z=(-1+i) \\
z=r(\cos \theta+i \sin \theta)
\end{gathered}
$$

Q. Find the roots and locate them graphically. (pg.no. 23)

$$
(-1+i)^{1 / 3}
$$

Solution: We can write

$$
W=z^{1 / 3}
$$

Where, Z is a complex no. i.e., $\mathbf{Z}=-\mathbf{1}+\mathbf{i}$ and \mathbf{W} is a function of \mathbf{Z}.
Since, the polar form of, $Z=-1+i$

$$
\begin{aligned}
Z & =-1+i=\sqrt{2}\{\cos (3 \pi / 4+2 k \pi)+i \sin (3 \pi / 4+2 k \pi)\} \\
Z^{1 / 3} & =(-1+i)^{1 / 3}=2^{1 / 6}\left\{\cos \left(\frac{3 \pi / 4+2 k \pi}{3}\right)+i \sin \left(\frac{3 \pi / 4+2 k \pi}{3}\right)\right\}
\end{aligned}
$$

$$
\text { If } k=0, Z_{1}=2^{1 / 6}(\cos \pi / 4+i \sin \pi / 4)
$$

$$
\text { If } k=1, Z_{2}=2^{1 / 6}(\cos 11 \pi / 12+i \sin 11 \pi / 12)
$$

$$
\text { If } k=2, Z_{3}=2^{1 / 6}(\cos 19 \pi / 12+i \sin 19 \pi / 12)
$$

So these are the required roots.

The root of a number x is another number, which when multiplied by itself a given number of times, equals x.

$$
y=\sqrt{x}
$$

Suppose $x=4$, Now

$$
y=\sqrt{4}
$$

\therefore So roots of 4 is ± 2
$\boldsymbol{W}=\boldsymbol{Z}^{\mathbf{1 / 3}}=(-1+i)^{1 / 3}=2^{1 / 6}\left\{\cos \left(\frac{3 \pi / 4+2 k \pi}{3}\right)+i \sin \left(\frac{3 \pi / 4+2 k \pi}{3}\right)\right\}$
If $k=0, Z_{1}=\mathbf{2}^{1 / 6}(\cos \pi / \mathbf{4}+\boldsymbol{i} \sin \pi / 4)$
If $k=1, Z_{2}=2^{1 / 6}(\cos 11 \pi / 12+i \sin 11 \pi / 12)$
If $k=2, Z_{3}=2^{1 / 6}(\cos 19 \pi / 12+i \sin 19 \pi / 12)$

- Roots of complex number (pg. no 23)
- Riemann surface (pg. no 46)
- Function of complex variable
- Branch line (pg. no. 45)
- Branch point (pg. no 45)
- Each sheet corresponds to a branch of the function and on each sheet the function is singlevalued.
- The concept of Riemann surfaces has the advantage that the various values of multiplevalued functions are obtained in a continuous fashion.
- For example, for the function $z^{1 / 3}$ the Riemann surface has 3 sheets; for $\ln z$, the Riemann surface has infinitely many sheets.

Neighborhoods: A delta, or δ, neighborhood of a point z_{0} is the set of all points z such that $\left|z-z_{0}\right|<\delta$, where δ is any given positive number.
A deleted δ neighborhood of z_{0} is a neighborhood of z_{0} in which the point z_{0} is omitted, i.e., $0<$ $\left|z-z_{0}\right|<\delta$.

Real number line

Z-plane
Suppose $\delta=1$, neighborhood of a point z_{0} is the set of all points z such that $\left|z-z_{0}\right|<\delta\left(\right.$ i. e. $\left.\left|z-z_{0}\right|\right)<1$.

Z-plane
Deleted neighborhood, when we omitted the point z_{0} i.e. $0<\left|z-z_{0}\right|<\delta$.

Identify the region $|z|<2$

Z-plane

Identify the region $\left|z-z_{0}\right|<1$

Identify the region $1<|z|<2$

Z-plane

Limit: Let $f(z)$ be defined and single-valued in a neighborhood of $z=z_{0}$ with the possible exception of $z-z_{0}$ itself (i.e., in a deleted δ neighborhood of z_{0}). We say that the number l is the limit of $f(z)$ as z approaches z_{0} and write $\boldsymbol{\operatorname { l i m }}_{\boldsymbol{z} \rightarrow \mathbf{z}_{0}} \boldsymbol{f}(\mathbf{z})=\boldsymbol{l}$ if for any positive number ϵ (however small), we can find some positive number δ (usually depending on ϵ) such that $f(z)-l<\epsilon$ whenever $0<\left|z-z_{0}\right|<\delta$.

Real function

$$
\begin{gathered}
\text { Here } f(x)-l<\epsilon \\
\text { and } 0<\left|x-x_{0}\right|<\delta
\end{gathered}
$$

Z-plane
Here $0<\left|z-z_{0}\right|<\delta$

W-plane
Here $f(z)-l<\epsilon$

Derivative: If $f(z)$ is single-valued in some region R of the z plane, the derivative of $f(z)$ is defined as

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

provided that the limit exists independent of the manner in which $\Delta z \rightarrow 0$. In such a case, we say that $f(z)$ is differentiable at z. Although differentiability implies continuity, the reverse is not true.

Real function

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Real function

A discontinuous function can not be differentiable.

Continuous at the corner but not
differentiable.

- Let z be a point P in the z-plane and let w be its image $P^{/}$in the w-plane under the transformation $w=f(z)$.
- If we give z an increment Δz, we obtain the point Q of z-plane. This point has image Q^{\prime} in the w plane. Thus, from w plane, we see that $P^{\prime} Q^{\prime}$ represents the complex number $\Delta w=f(z+\Delta z)-f(z)$. It follows that the derivative at z is given

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{Q \rightarrow P} \frac{P^{\prime} Q^{\prime}}{P Q}
$$

* Definition:

- If the derivative $f^{\prime}(z)$ exists at all points z of a region \mathcal{R}, then $f(z)$ is said to be analytic in \mathcal{R} and is referred to as an analytic function in \mathcal{R} or a function analytic in \mathcal{R}.
- A function $f(z)$ is said to be analytic at a point z_{0} if there exists a neighborhood $\left|z-z_{0}\right|<\delta$ at all points of which $f^{/}(z)$ exists.
Q. How do you check the differentiability of a function?

Ans. Checked the limit and continuity of the function at the given region.

Definition:

Necessary condition

- A necessary condition that $\mathrm{w}=f(z)=u(x, y)+i v(x, y)$ be analytic in a region \mathcal{R} is that, in \mathcal{R}, u and v satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Sufficient conditions

- If the partial derivatives of the above equations are continuous in \mathcal{R}, then the Cauchy-Riemann equations are sufficient conditions that $f(z)$ be analytic in \mathcal{R}.
- In polar form C-R equations

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

Q. Show that $\frac{d}{d z} \bar{z}$ does not exist anywhere, i.e., $f(z)=z^{\prime}$ is non-analytic anywhere. (without using C - R equations)

Solution: By definition,

$$
\frac{d}{d z} f(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

if this limit exists independent of the manner in which $\Delta z=\Delta x+i \Delta y$ approaches zero

$$
\begin{aligned}
\frac{d}{d z} \bar{z} & =\lim _{\Delta z \rightarrow 0} \frac{(\overline{z+\Delta z})-\bar{z}}{\Delta z} \\
& =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}} \frac{(\overline{x+i y+\Delta x+i \Delta y})-\overline{x+i y}}{\Delta x+i \Delta y} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x-i y+\Delta x-i \Delta y)-(x-i y)}{\Delta x+i \Delta y} \\
& =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}
\end{aligned}
$$

If $\Delta y=0$, the required limit is

$$
\begin{aligned}
\frac{d}{d z} \bar{z} & =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y=0}} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y} \\
& =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y=0}} \frac{\Delta x}{\Delta x} \\
& =1
\end{aligned}
$$

If $\Delta x=0$, the required limit is

$$
\begin{aligned}
\frac{d}{d z} \bar{z} & =\lim _{\substack{\Delta x=0 \\
\Delta y \rightarrow 0}} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y} \\
& =-1
\end{aligned}
$$

Then, since the limit depends on the manner in which $\Delta z \rightarrow 0$, the derivative does not exist, i.e., $f(z)=z^{\prime}$ is non-analytic anywhere.
Q. Show that $\frac{d}{d z} \bar{z}$ does not exist anywhere, i.e., $f(z)=z^{\prime}$ is non-analytic anywhere. (using \boldsymbol{C} - \boldsymbol{R} equations)

Solution: The given function

$$
\begin{gathered}
w=f(z)=\overline{x+i y} \\
\Rightarrow u(x, y)+i v(x, y)=x-i y \\
\therefore u(x, y)=x \quad \text { and } \quad v(x, y)=-y
\end{gathered}
$$

Now taking the partial derivative of $f(z)$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=1 \\
& \frac{\partial v}{\partial y}=-1 \\
& \frac{\partial u}{\partial y}=0 \\
& \frac{\partial v}{\partial x}=0
\end{aligned} \quad \begin{array}{r}
\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}
$$

Since, the given function does not follow the C-R equations, therefore the function $f(z)=z^{/}$is non-analytic.
Q. Prove that a (a) necessary and (b) sufficient condition that $w=f(z)=u(x, y)+i v(x, y)$ be analytic in a region \mathcal{R} is that the Cauchy-Riemann equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ are satisfied in \mathcal{R} where it is supposed that these partial derivatives are continuous in R.

$$
\begin{aligned}
z & =x+i y \\
\Delta z & =\Delta x+i \Delta y \\
w=f(z) & =u+i v \\
w=f(z) & =u(x, y)+i v(x, y) \\
w=f(z+\Delta z) & =u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)
\end{aligned}
$$

Solution:

(a) Necessity: In order for $w=f(z)$ to be analytic, the limit

$$
\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=f^{\prime}(z)
$$

$$
\begin{equation*}
=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \frac{\{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)\}-\{u(x, y)+i v(x, y)\}}{\Delta x+i \Delta y} \tag{1}
\end{equation*}
$$

must exist independent of the manner in which Δz (or Δx and Δy) approaches zero. We consider two possible approaches.
Case I: $\Delta x \rightarrow 0, \Delta y=0$. In this case eq. 1 becomes

$$
\begin{align*}
f^{\prime}(z) & =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y=0}} \frac{\{u(x+\Delta x, y)+i v(x+\Delta x, y)\}-\{u(x, y)+i v(x, y)\}}{\Delta x} \\
& =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y=0}}\left\{\frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i\left[\frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}\right]\right\}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \tag{2}
\end{align*}
$$

Case II: $\Delta x=0, \Delta y \rightarrow 0$. In this case eq. 1 becomes

$$
\begin{align*}
f^{\prime}(z) & =\lim _{\substack{\Delta x=0 \\
\Delta y \rightarrow 0}} \frac{\{u(x, y+\Delta y)+i v(x, y+\Delta y)\}-\{u(x, y)+i v(x, y)\}}{i \Delta y} \\
& =\lim _{\substack{\Delta x=0 \\
\Delta y \rightarrow 0}}\left\{\frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+\frac{v(x, y+\Delta y)-v(x, y)}{\Delta y}\right\} \\
& =\frac{1}{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \\
& =-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \tag{3}
\end{align*}
$$

Now $f(z)$ cannot possibly be analytic unless these two limits are identical i.e. eq. (2) and (3) are equal. Thus, a necessary condition that $f(z)$ be analytic is

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \\
& \text { Or } \\
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
& C-R \text { equations }
\end{aligned}
$$

Since, Δw is the small increment of the function $w=f(z)$

$$
\Delta w=f(z+\Delta z)-f(z)
$$

If $f(z)$ is continuous and has a continuous first derivative in a region, then

$$
\begin{aligned}
\Delta w & =\frac{f(z+\Delta z)-f(z)}{\Delta z} \Delta z \\
& =\left\{f^{\prime}(z)+\epsilon\right\} \Delta z
\end{aligned}
$$

Where $\epsilon \rightarrow 0$ as $\Delta z \rightarrow 0$. Now we can write the differential of w or $f(z)$

$$
d w=f^{\prime}(z) d z
$$

$$
\begin{array}{r}
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \neq \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
f^{\prime}(z)+\epsilon=\frac{f(z+\Delta z)-f(z)}{\Delta z}
\end{array}
$$

$$
\text { When } \Delta z \rightarrow 0 \text { we can write } \Delta z=d z \text { and } \Delta w=d w
$$

(a) Sufficiency: Since $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are supposed to be continuous, we have

$$
\begin{aligned}
\Delta u & =u(x+\Delta x, y+\Delta y)-u(x, y) \\
& =\{u(x+\Delta x, y+\Delta y)-u(x, y+\Delta y)\}+\{u(x, y+\Delta y)-u(x, y)\} \\
& =\left\{\frac{u(x+\Delta x, y+\Delta y)-u(x, y+\Delta y)}{\Delta x}\right\} \Delta x+\left\{\frac{u(x, y+\Delta y)-u(x, y)}{\Delta y}\right\} \Delta y \\
& =\left(\frac{\partial u}{\partial x}+\epsilon_{1}\right) \Delta x+\left(\frac{\partial u}{\partial y}+\eta_{1}\right) \Delta y \\
& =\frac{\partial u}{\partial x} \Delta x+\frac{\partial u}{\partial y} \Delta y+\epsilon_{1} \Delta x+\eta_{1} \Delta y
\end{aligned}
$$

If the partial derivatives of the above equations are continuous in \mathcal{R}, then the Cauchy-Riemann equations are sufficient conditions that $f(z)$ be analytic in \mathcal{R}.

Where $\epsilon_{1} \rightarrow 0$ and $\eta_{1} \rightarrow 0$ as $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$.
Similarly, since $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ are supposed to be continuous, we have

$$
\Delta v=\frac{\partial v}{\partial x} \Delta x+\frac{\partial v}{\partial y} \Delta y+\epsilon_{2} \Delta x+\eta_{2} \Delta y
$$

Where $\epsilon_{2} \rightarrow 0$ and $\eta_{2} \rightarrow 0$ as $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$.

Since our function is

$$
\begin{aligned}
w & =f(z) \\
& =u+i v
\end{aligned}
$$

Now,

$$
\begin{align*}
\Delta w & =\Delta u+i \Delta v \\
& =\frac{\partial u}{\partial x} \Delta x+\frac{\partial u}{\partial y} \Delta y+\epsilon_{1} \Delta x+\eta_{1} \Delta y+i \frac{\partial v}{\partial x} \Delta x+i \frac{\partial v}{\partial y} \Delta y+i \epsilon_{2} \Delta x+i \eta_{2} \Delta y \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \Delta y+\left(\epsilon_{1}+i \epsilon_{2}\right) \Delta x+\left(\eta_{1}+i \eta_{2}\right) \Delta y \\
& =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \Delta y+\epsilon \Delta x+\eta \Delta y \tag{4}
\end{align*}
$$

Where $\epsilon_{1}+i \epsilon_{2} \rightarrow 0$ and $\eta_{1}+i \eta_{2} \rightarrow 0$ as $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$.
By the Cauchy-Riemann equations, (4) can be written as

$$
\begin{aligned}
\Delta w & =\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(-\frac{\partial v}{\partial x}+i \frac{\partial u}{\partial x}\right) \Delta y+\epsilon \Delta x+\eta \Delta y \\
& =\frac{\partial u}{\partial x}(\Delta x+i \Delta y)+\frac{\partial v}{\partial x}(i \Delta x-\Delta y)+\epsilon \Delta x+\eta \Delta y \\
& =\frac{\partial u}{\partial x}(\Delta x+i \Delta y)+\frac{\partial v}{\partial x} i\left(\Delta x-\frac{1}{i} \Delta y\right)+\epsilon \Delta x+\eta \Delta y
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

$$
\Delta w=\frac{\partial u}{\partial x}(\Delta x+i \Delta y)+\frac{\partial v}{\partial x} i(\Delta x+i \Delta y)+\epsilon \Delta x+\eta \Delta y
$$

Then, on dividing by $\Delta x+i \Delta y$ on both side and taking the limit as $\Delta z \rightarrow 0$

$$
\begin{array}{r}
\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
\frac{d w}{d z}=f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
\end{array}
$$

So that the derivative exist and unique i.e. $f(z)$ is analytic in \mathcal{R}.
When
Then
We will assume that
the derivative are continuous and proceed with this assumption

- Proof the following relation

$$
\begin{array}{lll}
\text { 1. } \sin z=\frac{e^{i z}-e^{-i z}}{2 i} & \text { 5. } \sin ^{2} z+\cos ^{2} z=1 & \text { 9. } \frac{d}{d z} \cos (h z)=\sin (h z) \\
\text { 2. } \cos z=\frac{e^{i z}+e^{-i z}}{2} & \text { 6. } \sin (i z)=i \sin (h z) & \\
\text { 3. } \sin (h z)=\frac{e^{z}-e^{-z}}{2} & \text { 7. } \cos (i z)=\cos (h z) & \text { 8. } \frac{d}{d z} \sin (h z)=\cos (h z)
\end{array}
$$

Q. Show that the function $\sin z$ is analytic and hence find the derivative $f^{/}(z)$.

Solution: Since the given function is

$$
\sin (i y)=i \sinh y
$$

$$
\cos (i y)=\cosh y
$$

$$
\begin{aligned}
w & =f(z) \\
u+i v & =\sin z \\
& =\sin (x+i y) \\
y & =\sin x \cos (i y)+\cos x \sin (i y) \\
& =\sin x \cos h y+i \cos x \sin h y
\end{aligned}
$$

$\therefore u=\sin x \cos h y \quad$ and $v=\cos x \sin h y$
Now by using C-R equations

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\cos x \cdot \cosh y \\
& \frac{\partial v}{\partial y}=\cos x \cdot \cosh y \\
& \frac{\partial u}{\partial y}=\sin x \sinh y \\
& \frac{\partial v}{\partial x}=-\sin x \cdot \sinh y
\end{aligned} \quad\left[\begin{array}{r}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}\right.
$$

Since the C-R equation verified so the function is analytic.
Now,

$$
\begin{aligned}
w=f(z) & =u+i v \\
\Rightarrow f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& =\cos x \cdot \cosh y-i \sin x \cdot \sinh y \\
& =\cos x \cdot \cosh y-\sin x \cdot(i \sinh y) \\
& =\cos x \cdot \cos (i y)-\sin x \cdot \sin (i y) \\
& =\cos (x+i y) \\
& =\cos (z)
\end{aligned}
$$

$$
\therefore f^{\prime}(z)=\cos (z)
$$

Q. Show that the function $\ln (z)$ is analytic and hence find the derivative $f^{\prime}(z)$.

Solution: Since the given function is

$$
\begin{aligned}
w & =f(z) \quad Z=r e^{i \theta} \\
u+i v & =\ln z \quad \text { where }, \theta=\tan \\
& =\ln \left(r e^{i \theta}\right) \\
& =\ln (r)+\ln \left(e^{i \theta}\right) \\
& =\ln \left(\sqrt{x^{2}+y^{2}}+i \tan ^{-1}(y / x)\right. \\
\therefore u=\frac{1}{2} \ln \left(x^{2}\right. & \left.+y^{2}\right) \text { and } v=\tan ^{-1}(y / x)
\end{aligned}
$$

Now by using C-R equations

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=x /\left(x^{2}+y^{2}\right) \\
& \frac{\partial v}{\partial y}=x /\left(x^{2}+y^{2}\right) \\
& \frac{\partial u}{\partial y}=y /\left(x^{2}+y^{2}\right) \\
& \frac{\partial v}{\partial x}=-y /\left(x^{2}+y^{2}\right) \\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Since the C-R equations are verified so the function is analytic.
Now,

$$
\begin{aligned}
w=f(z) & =u+i v \\
\Rightarrow f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad f^{\prime}(z)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} \\
& =\frac{x}{\left(x^{2}+y^{2}\right)}-i \cdot \frac{y}{\left(x^{2}+y^{2}\right)} \\
& =\frac{x-i y}{\left(x^{2}+y^{2}\right)} \\
& =\frac{x-i y}{(x+i y) \cdot(x-i y)} \\
& =\frac{1}{(x+i y)} \\
\therefore f^{\prime}(z) & =\frac{1}{z}
\end{aligned}
$$

This is the required derivative of $\ln (z)$.

Definition: Singular point

If $\boldsymbol{f}(\boldsymbol{z})$ fails to be analytic in some point $\boldsymbol{Z}_{\mathbf{0}}$ but analytic in some neighbourhood of that point then the point Z_{0} is called the singular point or singularity of $f(z)$.

Example 1: Find the singular point of the function $f(z)=\frac{1}{z}$.

When we put $\mathrm{Z}=0$, the function will blow up and elsewhere the function is analytic except $Z=0$. So $Z=0$ is called the singular point.

Example 2: Find the singular point of the function $f(z)=\frac{1}{Z+i}$.
When we put $Z=-i$, the function will blow up and elsewhere the function is analytic except $Z=-i$. So $Z=-i$ is called the singular point.

How to find singularity of a given function?

Just put the denominator of the given function equal to zero and solve the equation, the obtained roots or solution of the equation denotes the singularities.

Types of singularities:

1. Isolated singularities: The point $z=z_{0}$ is called an isolated singularity or isolated singular point of $f(z)$ if we can find $\delta>0$ such that the circle $\left|z-z_{0}\right|=\delta$ encloses no singular point other than z_{0} (i.e., there exists a deleted δ neighborhood of z_{0} containing no singularity).

Example 1: Find the singular point of the function $f(z)=\frac{1}{z^{2}+4}$.
Here, the singular points are

$$
\begin{aligned}
z^{2}+4 & =0 \\
\text { Or } \quad Z & = \pm 2 i
\end{aligned}
$$

So, here we get two singular points, one at $Z=2 i$ and another at $Z=-2 i$.

- If we can find $\delta>0$ such that the circle $|z-2 i|=\delta$ encloses no singular point other than $z=2 i$ then this singularity is called isolated singular point.
- If we can find $\delta>0$ such that the circle $|z+2 i|=\delta$ encloses no singular point other than $z=-2 i$ then this singularity is called isolated singular point.

Types of singularities:

2. Poles: If z_{0} is an isolated singularity and we can find a positive integer n such that $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z)=\mathrm{A} \neq 0$, then $z-$ z_{0} is called a pole of order n. If $n=1$, then z_{0} is called a simple pole.
Example 1: Find the singular point of the function $f(z)=\frac{1}{z^{2}+4}$.
Here, the singular points are

$$
\begin{aligned}
z^{2}+4 & =0 \\
\text { Or } \quad Z & = \pm 2 i
\end{aligned}
$$

So, here we get two singular points, one at $Z=2 i$ and another at $Z=-2 i$. Now, for $Z=2 i$

$$
\begin{aligned}
& =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z) \\
& =\lim _{z \rightarrow 2 i}(z-2 i)^{1} \frac{1}{z^{2}+4} \\
& =\lim _{z \rightarrow 2 i}(z-2 i)^{1} \frac{1}{(z+2 i)(z-2 i)} \\
& =\lim _{z \rightarrow 2 i} \frac{1}{(z+2 i)} \\
& =1 / 4 i
\end{aligned}
$$

- $\operatorname{So} Z=2 i$ is a pole of order 1 or simple pole.

Similarly, for $Z=-2 i$

$$
\begin{aligned}
& =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z) \\
& =\lim _{z \rightarrow-2 i}(z+2 i)^{1} \frac{1}{z^{2}+4} \\
& =\lim _{z \rightarrow-2 i}(z+2 i)^{1} \frac{1}{(z+2 i)(z-2 i)} \\
& =\lim _{z \rightarrow-2 i} \frac{1}{(z-2 i)} \\
& =1 /-4 i
\end{aligned}
$$

- So $Z=-2 i$ is a pole of order 1 or simple pole.

Example 2: Find the singular point of the function $f(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.
Here, the singular points are

$$
\begin{aligned}
z^{2}+4 & =0 \\
\text { Or } \quad Z & = \pm 2 i
\end{aligned}
$$

So, here we get two singular points, one at $Z=2 i$ and another at $Z=-2 i$. Now, for $Z=2 i$

$$
\begin{aligned}
& =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{n} f(z) \\
& =\lim _{z \rightarrow 2 i}(z-2 i)^{2} \frac{1}{\left(z^{2}+4\right)^{2}} \\
& =\lim _{z \rightarrow 2 i}(z-2 i)^{2} \frac{1}{(z-2 i)^{2}(z+2 i)^{2}} \\
& =\lim _{z \rightarrow 2 i} \frac{1}{(z+2 i)^{2}} \\
& =1 /-16
\end{aligned}
$$

- $\operatorname{So} Z=2 i$ is a pole of order 2.

Similarly, for $Z=-2 i$

$$
\begin{aligned}
& =\lim _{z \rightarrow-2 i}(z-2 i)^{2} \frac{1}{\left(z^{2}+4\right)^{2}} \\
& =\lim _{z \rightarrow-2 i}(z-2 i)^{2} \frac{1}{(z-2 i)^{2}(z+2 i)^{2}} \\
& =\lim _{z \rightarrow-2 i} \frac{1}{(z-2 i)^{2}} \\
& =1 /-16
\end{aligned}
$$

- So $Z=-2 i$ is a pole of order 2 .

Example 3: $f(z)=\frac{1}{(z-3)^{2}}$ has a pole of order 2 at $z=3$.
Example 4: $f(z)=\frac{(3 z-2)}{(z-2)^{2}(z-1)} \quad \begin{aligned} & \text { has a pole of order } 2 \text { at } \\ & z=2, \text { and simple pole at }\end{aligned}$

Types of singularities:

3. Branch point: Branch Points of multiple-valued functions are non-isolated singular points since a multiple-valued function is not continuous and, therefore, not analytic in a deleted neighborhood of a branch point.

Example 1: $f(z)=(z-3)^{1 / 2}$ has a branch point at $z=3$. This branch point i.e. $z=3$ is called a non-isolated singular point.

Example 2: what is the singular point of $f(z)=(z-3)$.
$>$ It does not has any singular point.
Example 3: $f(z)=\ln \left(z^{2}+z-2\right)$ has a branch point where $z^{2}+z-2=0$, i. e., at $\mathrm{z}=1$ and $\mathrm{z}=-2$. These branch points are called as non-isolated singular point.

Types of singularities:

4. Removable singularities: An isolated singular point z_{0} is called a removable singularity of $f(z)$ if $\lim _{z \rightarrow z_{0}} f(z)$ exists. By defining $f\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} f(z)$, it can then be shown that $f(z)$ is not only continuous at z_{0} but is also analytic at z_{0}.

Example 1: Find the type of singular point of $f(z)=\frac{\sin z}{z}$
$>$ In the given function, $z=\mathbf{0}$ is singular point. Since if we put $z=0$ then the given function will blow up.

Now,

$$
\begin{aligned}
& f(z)=\frac{\sin z}{z} \\
& f(z)=\frac{1}{z}(\sin z) \\
& f(z)=\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right) \\
& f(z)=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots
\end{aligned}
$$

Hence we have seen that the singular point $\mathbf{z}=\mathbf{0}$ is removable.

Again,

$$
\begin{aligned}
\lim _{z \rightarrow 0} f(z) & =\lim _{z \rightarrow 0}\left(1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots\right) \\
& =1
\end{aligned}
$$

It has been found that $f(z)$ if $\lim _{z \rightarrow 0} f(z)$ exists
Therefore, the given function has a removable singular point at $z=0$.

Types of singularities:

5. Essential singularities: An isolated singularity that is not a pole or removable singularity is called an essential singularity.

Example 1: Find the type of singular point of $f(z)=e^{1 / z}$
> Let us expand the given function

$$
\begin{aligned}
f(z) & =e^{1 / z} \\
& =1+\left(\frac{1}{z}\right)+\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots
\end{aligned}
$$

So, it is found that $z=0$ is a singular point and it is neither removable singularity nor a pole (since the power is goes on increasing).

Such type of singularities are called essential singularities.

If a function has an isolated singularity, then the singularity is either removable, a pole, or an essential singularity.

Laurent Series

Definition:

In mathematics, an integral assigns numbers to functions in a way that describes area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. (from Wikipedia)

Integration is basically summation, but with some differences

$>$ Summation has been used when the data are discrete
$>$ Integration has been used when the data are continuous
Area(under the curve)
$=$ Add up all the area of rectangular strip
$=f\left(\xi_{1}\right)\left(x_{1}-x_{0}\right)+f\left(\xi_{2}\right)\left(x_{2}-x_{1}\right)+\cdots+f\left(\xi_{n}\right)\left(x_{n}-x_{n-1}\right)$
$=\sum_{k=1}^{n} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)$
$=\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}$
When $\Delta x_{k} \rightarrow 0$, (exist only when the function is continuous)
Area(under the curve) $=\int_{a}^{b} f(x) d x$

Let $f(z)$ be continuous at all points of a curve C Fig., which we shall assume has a finite length, i.e., C is a rectifiable curve.

Now, subdivide C into n parts by means of points $\boldsymbol{z}_{\mathbf{1}}, \boldsymbol{z}_{\mathbf{2}}, \ldots, \boldsymbol{z}_{\boldsymbol{n}-\mathbf{1}}$, chosen arbitrarily, and call $\boldsymbol{a}=\boldsymbol{z}_{\mathbf{0}}, \boldsymbol{b}=\boldsymbol{z}_{\boldsymbol{n}}$.
On each arc joining $\mathbf{z}_{\boldsymbol{k}-\mathbf{1}}$ to $\boldsymbol{z}_{\boldsymbol{k}}$ [where k goes from 1 to n], choose a point $\xi_{\boldsymbol{k}}$.

Let $f(z)$ be continuous at all points of a curve C Fig., which we shall assume has a finite length, i.e., C is a rectifiable curve.

Now, subdivide C into n parts by means of points $\boldsymbol{z}_{\mathbf{1}}, \boldsymbol{z}_{\mathbf{2}}, \ldots, \boldsymbol{z}_{\boldsymbol{n}-\mathbf{1}}$, chosen arbitrarily, and call $\boldsymbol{a}=\boldsymbol{z}_{\mathbf{0}}, \boldsymbol{b}=\boldsymbol{z}_{\boldsymbol{n}}$.
On each arc joining $\boldsymbol{z}_{\boldsymbol{k}-\mathbf{1}}$ to $\boldsymbol{z}_{\boldsymbol{k}}$ [where k goes from 1 to n], choose a point $\xi_{\boldsymbol{k}}$.
From the sum,

$$
S_{n}=f\left(\xi_{1}\right)\left(\mathbf{z}_{\mathbf{1}}-\boldsymbol{a}\right)+f\left(\xi_{2}\right)\left(\mathbf{z}_{\mathbf{2}}-\mathbf{z}_{\mathbf{1}}\right)+\cdots+f\left(\xi_{n}\right)\left(\boldsymbol{b}-\mathbf{z}_{n-\mathbf{1}}\right)
$$

On writing $\boldsymbol{z}_{\boldsymbol{k}}-\boldsymbol{z}_{\boldsymbol{k}-\mathbf{1}}=\boldsymbol{\Delta} \boldsymbol{z}_{\boldsymbol{k}}$, this becomes

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} f\left(\xi_{k}\right)\left(\mathbf{z}_{\boldsymbol{k}}-\mathbf{z}_{\boldsymbol{k}-\mathbf{1}}\right) \\
& =\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta z_{k}
\end{aligned}
$$

Let the number of subdivisions \boldsymbol{n} increase in such a way that the largest of the chord lengths $\left|\boldsymbol{\Delta} \boldsymbol{z}_{\boldsymbol{k}}\right|$ approaches zero. Then, since $f(z)$ is continuous, the sum S_{n} approaches a limit that does not depend on the mode of subdivision and we denote this limit by

$$
\int_{a}^{b} f(z) d z \quad \text { or } \quad \int_{C} f(z) d z
$$

called the complex line integral or simply line integral of $f(z)$ along curve C , or the definite integral of $f(z)$ from a to b along curve C .

In such a case, $f(z)$ is said to be integrable along C. If $f(z)$ is analytic at all points of a region R and if C is a curve lying in R, then $f(z)$ is continuous and therefore integrable along C .

Q. Calculate the line integral of the function $\overrightarrow{\boldsymbol{v}}=\boldsymbol{y}^{2} \hat{\boldsymbol{x}}+\mathbf{2 x}(\boldsymbol{y}+\mathbf{1}) \widehat{\boldsymbol{y}}$ from the point $\boldsymbol{a}=(\mathbf{1}, \mathbf{1}, \mathbf{0})$ to the point $\boldsymbol{b}=(2,2,0)$ along path along the path (1) and (2) as shown in figure. Also find the close path integral that goes from a to b along path (1) and return to a along path (2).
Solution: Since, we know

$$
\overrightarrow{d l}=d x \widehat{x}+\mathrm{dy} \widehat{y}+\mathrm{dz} \widehat{z}
$$

Path (1) consist of two parts.
Along the (i) horizontal segment, $d y=d z=0$, so

$$
\begin{aligned}
\overrightarrow{d l} & =d x \widehat{x}, \quad y=1, \\
\therefore \vec{v} \cdot \overrightarrow{d l} & =y^{2} d x=d x
\end{aligned}
$$

So, the line integral

$$
\int_{1}^{2} \vec{v} \cdot \overrightarrow{d l}=\int_{1}^{2} d x=1
$$

On the (ii) vertical segment, $d x=d z=0$, so

$$
\begin{aligned}
\overrightarrow{d l} & =d y \widehat{y}, x=2 \\
\therefore \vec{v} \cdot \overrightarrow{d l} & =4(y+1) d y
\end{aligned}
$$

So, the line integral

$$
\int_{1}^{2} \vec{v} \cdot \overrightarrow{d l}=\int_{1}^{2} 4(y+1) d y=10
$$

So, by the path (1)

$$
\int_{a}^{b} \vec{v} \cdot \overrightarrow{d l}=1+10=11
$$

Meanwhile, on path (2), $x=y, d x=d y$, and $d z=0$, so

$$
\begin{aligned}
\overrightarrow{d l} & =d x \hat{x}+d x \widehat{y} \\
\therefore \vec{v} \cdot \overrightarrow{d l} & =x^{2} d x+2 x(x+1) d x=\left(3 x^{2}+2 x\right) d x
\end{aligned}
$$

So, the line integral along path (2)

$$
\int_{a}^{b} \vec{v} \cdot \overrightarrow{d l}=\int_{1}^{2}\left(3 x^{2}+2 x\right) d x=10
$$

Now, for the loop that goes out (1) and back (2)

$$
\oint \vec{v} \cdot \overrightarrow{d l}=11-10=1
$$

Also, for the loop that goes out (2) and back (1)

$$
\oint \vec{v} \cdot \overrightarrow{d l}=10-11=-1
$$

So, what we have found in this line integration

- The line integration along path (1) and path (2) both have different values.
- The closed line integration for the loop that goes out (1) and back (2) is different for that of goes out (2) and back (1).

> The line integration is path dependent for real function
Q. Find the line integral for $f(z)=z$ for the path as shown in figure.

Path (1)

Path (2)

Path (3)

Solution:
Since,

$$
\begin{aligned}
z & =x+i y \\
\therefore d z & =d x+i d y
\end{aligned}
$$

Now, $f(z)=x+i y$
Therefore, $\int_{C} f(z) d z=\int_{c}(x+i y)(d x+i d y)$
Path (1):

$$
x=0, y=0 \rightarrow 1 \quad x=0 \rightarrow 1, y=1
$$

Path (1)

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{0}^{1}(0+i y)(0+i d y)+\int_{0}^{1}(x+i .1)(d x+i .0) \\
& =\int_{0}^{1}(-y d y)+\int_{0}^{1}(x d x+i d x) \\
& =-\frac{1}{2}+0+\frac{1}{2}+i \\
& =i
\end{aligned}
$$

Path (2):

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{0}^{1}(x+0)(d x+0)+\int_{0}^{1}(1+i . y)(0+i . d y) \\
& =\int_{0}^{1}(x d x)+\int_{0}^{1}(i d y-y d y) \\
& =\frac{1}{2}+i-\frac{1}{2} \\
& =i
\end{aligned}
$$

Path (2)

Complex Line Integrals (only for concept)

Path (3):

$$
x=y, d x=d y, \mathrm{x}=0 \rightarrow 1
$$

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{0}^{1}(x+i x)(d x+i d x) \\
& =\int_{0}^{1}(x d x+i .2 x d x-x d x) \\
& =\int_{0}^{1}(i .2 x d x) \\
& =i .2 . \frac{1}{2} \\
& =i
\end{aligned}
$$

So, it is found that the line integration of analytic complex function is path independent.

The close path/line integral of analytic complex function is always

Path (3)

Q. Find the line integral for $\boldsymbol{f}(\mathbf{z})=\overline{\mathbf{z}}$ for the path as shown in figure.

Solution: Since,

$$
\begin{aligned}
z & =x+i y \quad \Rightarrow \bar{z}=x-i y \\
\therefore d z & =d x+i d y \\
\text { Now, } f(z) & =x-i y
\end{aligned}
$$

Therefore, $\int_{C} f(z) d z=\int_{C}(x-i y)(d x+i d y)$

Path (1)

Path (1): $\quad x=0 \rightarrow 1, y=0 \quad x=1, y=0 \rightarrow 1$

$$
\int_{C} f(z) d z=\int_{0}^{1} \curvearrowright(x-0)(d x+0)+\int_{0}^{1}(1-i . y)(0+i . d y)
$$

$$
=\int_{0}^{1}(x d x)+\int_{0}^{1}(i . d y+y d y)
$$

$$
=\frac{1}{2}+i+\frac{1}{2}
$$

$$
=1+i
$$

Path (2):

$$
\begin{aligned}
& \int_{C} f(z) d z=\int_{0}^{1}(0-i y)(0+i d y) \\
& \int_{0}^{1}(x-i .1)(d x+i .0) \\
&=\int_{0}^{1}(y d y)+\int_{0}^{1}(x d x-i d x) \\
&=\frac{1}{2}+\frac{1}{2}-i \\
&=1-i
\end{aligned}
$$

So, it is found that the line integration of non-analytic complex function is path dependent.

The close path/line integral of non-analytic complex function is not zero.

Cauchy's Theorem (Statement):

Let $f(z)$ be analytic in a region \mathcal{R} and on its boundary C. Then

$$
\oint_{C} f(z) d z=0
$$

This fundamental theorem, often called Cauchy's integral theorem or simply Cauchy's theorem or Cauchy-Goursat theorem, is valid for both simply- and multiply-connected regions.

Note: This is not Cauchy's integral formula.
Q. What is a simple closed curve? (page 83)
$>$ A closed curve that does not intersect itself anywhere is called a simple closed curve.

Fig.: Continuous curve or arc

Fig.: Simple closed curve

Fig.: Non-Simple closed curve
\square A region \mathcal{R} is called simply-connected if any simple closed curve, which lies in \mathcal{R}, can be shrunk to a point without leaving \mathcal{R}. A region \mathcal{R}, which is not simply-connected, is called multiply-connected.

Fig.: (1) simply-connected region

Fig.: (2) multiply-connected region with one hole

Fig.: (3) multiply-connected region with three holes

Here, \mathcal{R} is the region defined by $|z|<2$.
Γ is any simple closed curve lying in \mathcal{R} and it can be shrunk to a point that lies in \mathcal{R}, and thus does not leave R , so that R is simply-connected

Here, \mathcal{R} is the region defined by $1<|Z|<2$.
Γ is any simple closed curve lying in \mathcal{R} and it can not possibly shrunk to a point without leaving \mathcal{R}, so that \mathcal{R} is multiply-connected.

Jordan Curve

Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called a Jordan curve

Jordan Curve Theorem

A Jordan curve divides the plane into two regions having the curve as a common boundary. That region, which is bounded [i.e., is such that all points of it satisfy $|z|<M$, where M is some positive constant], is called the interior or inside of the curve, while the other region is called the exterior or outside of the curve.

The boundary C of a region is said to be traversed in the positive sense or direction if an observer travelling in this direction [and perpendicular to the plane] has the region to the left.

We use the special symbol

$$
\oint_{C} f(z) d z=0
$$

to denote integration of $f(z)$ around the boundary C in the positive sense. The integral around C is often called a contour integral.

Note:

- In the case as shown in the figure, the positive direction is the counterclockwise direction for the outer circle.
- In the case as shown in the figure, the positive direction is the clockwise direction for the inner circle.

Contour:

A curve, which is composed of a finite number of smooth arcs, is called a piecewise or sectionally smooth curve or sometimes a contour.

Or
An outline representing or bounding the shape or form of something.

Fig.: Contour line.

Contour Integration:

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

Contour integration methods include:

- direct integration of a complex-valued function along a curve in the complex plane (a contour)
- application of the Cauchy integral formula; and
- application of the residue theorem.

Let $P(x, y)$ and $Q(x, y)$ be continuous and have continuous partial derivatives in a region R and on its boundary C . Green's theorem states that

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

The theorem is valid for both simply- and multiply-connected regions.

We can simply replace the P and Q with u and v to get a better visualization
Let $u(x, y)$ and $v(x, y)$ be continuous and have continuous partial derivatives in a region Rand on its boundary C . Green's theorem states that

$$
\oint_{C} u d x+v d y=\iint_{R}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y
$$

Q. Prove Cauchy's theorem $\oint_{C} f(z) d z=0$ if $f(z)$ is analytic and continuous at all points inside and on a simple closed curve C Or Prove Cauchy's theorem for simply connected region.

Solution:

Let us consider, $f(z)=u+i v$, where $z=x+i y$ and u and v are function of x and y.

Since $f(z)$ is analytic and has a continuous derivative, so we can write

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

using $C-R$ equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

The given contour integration can be written as,

$$
\oint_{C} f(z) d z=\oint_{C}(u+i v)(d x+i d y)=\oint_{C} u d x-v d y+i \oint_{C} v d x+u d y
$$

Now, using Green's theorem

$$
\oint_{C} f(z) d z=\iint_{R}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+\iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y=0
$$

Q. Prove the Cauchy-Goursat theorem for multiply-connected regions.

Proof:

We shall present a proof for the multiply-connected region R bounded by the simple closed curves C_{1} and C_{2} as indicated in Fig.

Construct cross-cut AH. Then the region bounded by ABDEFGAHIJHA is simply-connected, So

$\oint_{\text {ABDEFGAHIJHA }} f(z) d z=0$

$\Rightarrow \oint_{\text {ABDEFGA }} f(z) d z+\oint_{\mathbf{A H}} f(z) d z+\oint_{\mathbf{H I J H}} f(z) d z+\oint_{\mathbf{H A}} f(z) d z=$

$$
\Rightarrow \oint_{\text {ABDEFGA }} f(z) d z+\oint_{\text {HIJH }} f(z) d z=0
$$

$$
\Rightarrow \oint_{\mathbf{C}} f(z) d z=0
$$

where C is the complete boundary of R (consisting of ABDEFGA and HIJH) traversed in the sense that an observer walking on the boundary always has the region R on his/her left.

Note: Since,

$$
\oint_{\text {ABDEFGA }} f(z) d z+\oint_{\mathbf{H I J H}} f(z) d z=0
$$

$$
\begin{gathered}
\Rightarrow \quad \oint_{\boldsymbol{C}_{\mathbf{1}}} f(z) d z+\oint_{C_{2}} f(z) d z=0 \\
\Rightarrow \quad \oint_{\boldsymbol{C}_{\mathbf{1}}} f(z) d z=-\oint_{C_{2}} f(z) d z
\end{gathered}
$$

Now, if we take the integration on contour $\boldsymbol{C}_{\mathbf{1}}$ as positive sense and on the contour $\boldsymbol{C}_{\mathbf{2}}$ as negative sense as shown in figure, then

$$
\oint_{\boldsymbol{C}_{1}} f(z) d z=\oint_{C_{2}} f(z) d z
$$

Outer contour integration = Inner contour integration
Similarly,

$$
\oint_{C_{1}} f(z) d z=\oint_{C_{2}} f(z) d z+\oint_{C_{3}} f(z) d z+\oint_{C_{4}} f(z) d z
$$

Q. Evaluate $\oint_{C} \frac{d z}{z-a}$ where C is any simple closed curve C and $z=a$ or $z=z_{0}$ is (a) outside C and (b) inside C .

Solution: Here, the given function $f(z)=\frac{1}{z-a}$ has a singularity at $z=a$, so the function is blows up at this point and hence it is not analytic at $z=a$.
(a) If $z=a$ is outside C , then $f(z)=\frac{1}{z-a}$ is analytic everywhere inside and on

$$
\begin{aligned}
& \text { C. } \\
& \text { Hence, by Cauchy's theorem } \oint_{C} \frac{d z}{z-a}=0
\end{aligned}
$$

(b) Suppose $z=a$ is inside C and let Γ be a circle of radius ϵ with center at $z=a$ so that Γ is inside C.

We can write

$$
\begin{equation*}
\oint_{C} \frac{d z}{z-a}=\oint_{\Gamma} \frac{d z}{z-a} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Now, on } \Gamma \\
& \qquad \begin{array}{ll}
|z-a|=\epsilon & \text { Equation of the circle } \\
\Rightarrow|z-a|=\epsilon \mid e^{i \theta} & \text { Since, }\left|e^{i \theta}\right|=1 \\
\Rightarrow z-a=\epsilon e^{i \theta} & \text { Here, } 0 \leq \theta<2 \pi
\end{array}
\end{aligned}
$$

Thus, since $d z=i \epsilon e^{i \theta} d \theta$, the right side of (1) becomes

$$
\begin{aligned}
\oint_{C} \frac{d z}{z-a} & =\oint_{0}^{2 \pi} \frac{i \epsilon e^{i \theta} d \theta}{\epsilon e^{i \theta}} \\
& =\oint_{0}^{2 \pi} i d \theta \\
& =i 2 \pi \text { or } 2 \pi \mathrm{i}
\end{aligned}
$$

This is the required contour integration value.

Cauchy's Integral Formula

Statement (Cauchy's integral formula)

Let $\mathrm{f}(\mathrm{z})$ be analytic inside and on a simple closed curve C and let a be any point inside C . Then

$$
f(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)} d z
$$

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of $f(z)$ at $z=a$ is given by

$$
f^{n}(a)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)^{n+1}} d z \quad \text { Where, } \mathrm{n}=1,2,3,4,5, \ldots
$$

When, $\mathrm{n}=0$ we get (This is a special case)

Q. What is the significant of this formula? Or Why it is so important?

Forward : If a function of a complex variable has a first derivative, i.e., is analytic, in a simply-connected region R , all its higher derivatives exist in R . This is not necessarily true for functions of real variables.

Backward : If a function $f(z)$ is analytic in a simple closed curve C , then we can find the integration of a function $G(z)$ such that $G(z)=\frac{f(z)}{(z-a)}$. The required integration will be

$$
\oint_{C} \frac{f(z)}{(z-a)^{n+1}} d z=f^{n}(a) \times \frac{2 \pi i}{n!}
$$

Q. Evaluate $\oint_{C} \frac{1}{z-a} d z$ where C is any simple closed curve C and $z=a$ or $z=z_{0}$ is (a) outside C and-(b) inside C .

Solution: (b) We know that

$$
\oint_{C} \frac{f(z)}{(z-a)^{n+1}} d z=f^{n}(a) \times \frac{2 \pi i}{n!}
$$

The given integration $\oint_{C} \frac{d z}{(z-a)^{0+1}}$.
Now by comparing with Cauchy's integral formula

$$
\begin{aligned}
f(z) & =1 \\
n & =0
\end{aligned}
$$

So, the required integration

$$
\begin{aligned}
\oint_{C} \frac{d z}{z-a} & =1 \times \frac{2 \pi i}{0!} \\
& =2 \pi i
\end{aligned}
$$

When you become expert in this course
Using Cauchy integral formula

$$
\begin{aligned}
& \oint_{C} \frac{f(z)}{(z-a)^{0+1}} d z=1 \times \frac{2 \pi i}{0!} \\
\Rightarrow \quad & \oint_{C} \frac{f(z)}{(z-a)} d z=2 \pi i
\end{aligned}
$$

This is the required integration.
Q. Evaluate $\oint_{C} \frac{e^{2 z}}{(z+1)^{4}}$ dz where C is the circle $|z|=3$.

Solution: Since, Cauchy's integral formula

$$
\oint_{C} \frac{f(z)}{(z-a)^{n+1}} d z=f^{n}(a) \times \frac{2 \pi i}{n!}
$$

By comparing the given integration with Cauchy's integral formula

$$
\oint_{C} \frac{e^{2 z}}{(z+1)^{3+1}} d z=f^{3}(-1) \times \frac{2 \pi i}{3!}---------(i)
$$

Now,

$$
\begin{aligned}
f(z) & =e^{2 z} \\
\Rightarrow \quad f^{\prime}(z) & =2 \times e^{2 z} \\
\Rightarrow \quad f^{\prime /}(z) & =4 \times e^{2 z} \\
\Rightarrow \quad f^{\prime / /}(z) & =8 \times e^{2 z} \\
\Rightarrow f^{\prime / /}(-1) & =8 \times e^{-2}
\end{aligned}
$$

The required integration from equation (i)

$$
\begin{aligned}
\oint_{C} \frac{e^{2 z}}{(z+1)^{3+1}} d z & =8 \times e^{-2} \times \frac{2 \pi i}{3!} \\
& =8 \times e^{-2} \times \frac{2 \pi i}{3 \times 2} \\
& =\frac{8 \pi i}{3 e^{2}}
\end{aligned}
$$

If the point ' \boldsymbol{a} ' is outside the region then we can directly used Cauchy's theorem and will get the results as ' $\mathbf{0}$ ' i.e

$$
\oint_{C} \frac{e^{2 z}}{(z+1)^{4}} d z=0
$$

Q. Evaluate $\oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-1)(z-2)} d z$ where C is the circle $(\mathbf{a})|z|=\mathbf{3}$ and $(\mathbf{b})|z|=\mathbf{2}$.

Solution: Since,

$$
\begin{aligned}
& \frac{1}{(z-1)(z-2)}=\frac{A}{(z-1)}+\frac{B}{(z-2)} \\
& \frac{1}{(z-1)(z-2)}=\frac{A(z-2)+B(z-1)}{(z-1)(z-2)}
\end{aligned}
$$

$$
1=A(z-2)+B(z-1)
$$

When, $z=2$, we get

$$
\begin{aligned}
1 & =B(2-1) \\
\Rightarrow B & =1
\end{aligned}
$$

When, $z=1$, we get

$$
\begin{aligned}
1 & =A(1-2) \\
\Rightarrow A & =-1
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \frac{1}{(z-1)(z-2)}=\frac{(-1)}{(z-1)}+\frac{1}{(z-2)} \\
& \frac{1}{(z-1)(z-2)}=\frac{1}{(z-2)}-\frac{1}{(z-1)}
\end{aligned}
$$

So the given integration becomes,
$\oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-1)(z-2)} d z=\oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-2)} d z-\oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-1)} d z$
Since $z=1$ and $z=2$ are inside or on C and $\left(\sin \pi z^{2}+\cos \pi z^{2}\right.$ is analytic inside C.

By Cauchy's integral formula

$$
\begin{aligned}
& \oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-1)(z-2)} d z=2 \pi i\left[(\sin (\pi 2))^{2}+\cos (\pi 2)^{2}\right]-2 \pi i\left[(\sin (\pi))^{2}+\cos (\pi)^{2}\right] \\
& \oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-1)(z-2)} d z=2 \pi i-2 \pi i(-1) \\
& \oint_{C} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right)}{(z-1)(z-2)} d z=4 \pi i
\end{aligned}
$$

This is the required integration.
Q. Let $f(z)$ be analytic inside and on the boundary C of a simply-connected region R. Prove Cauchy's integral formula

$$
f(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)} d z \quad \text { Or } \quad f^{n}(a)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z) d z}{(z-a)^{n+1}}
$$

where C is traversed in the positive (counterclockwise) sense.

Solution:

The function $\frac{f(z)}{(z-a)}$ is analytic inside and on C except at the point $z=a$. Now we can write,

$$
\begin{equation*}
\oint_{C} \frac{f(z) d z}{z-a}=\oint_{\Gamma} \frac{f(z) d z}{z-a} \tag{1}
\end{equation*}
$$

Now, on Γ

$$
\begin{array}{rlrl}
|z-a| & =\epsilon & & \text { Equation of the circle } \\
\Rightarrow|z-a| & =\epsilon \mid e^{i \theta} & & \text { Since, }\left|e^{i \theta}\right|=1 \\
\Rightarrow z-a & =\epsilon e^{i \theta} & & \text { Here, } 0 \leq \theta<2 \pi \\
\hline
\end{array}
$$

Thus, since $d z=i \epsilon e^{i \theta} d \theta$, the right hand side of equation (1) becomes

$$
\begin{align*}
\oint_{C} \frac{f(z) d z}{z-a} & =\oint_{0}^{2 \pi} \frac{f\left(a+\epsilon e^{i \theta}\right) i \epsilon e^{i \theta} d \theta}{\epsilon e^{i \theta}} \\
& =i \oint_{0}^{2 \pi} f\left(a+\epsilon e^{i \theta}\right) d \theta \tag{2}
\end{align*}
$$

Taking the limit of both sides of (2) and making use of the continuity of $f(z)$, we have

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \oint_{C} \frac{f(z) d z}{z-a} & =\lim _{\epsilon \rightarrow 0} i \oint_{0}^{2 \pi} f\left(a+\epsilon e^{i \theta}\right) d \theta \\
\oint_{C} \frac{f(z) d z}{z-a} & =i \oint_{0}^{2 \pi} \lim _{\epsilon \rightarrow 0} f\left(a+\epsilon e^{i \theta}\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
\oint_{C} \frac{f(z) d z}{z-a} & =i \oint_{0}^{2 \pi} \lim _{\epsilon \rightarrow 0} f\left(a+\epsilon e^{i \theta}\right) d \theta \\
& =i \oint_{0}^{2 \pi} f(a) d \theta \\
& =2 \pi i f(a)
\end{aligned}
$$

so that we have

$$
\begin{equation*}
f(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{z-a} \tag{3}
\end{equation*}
$$

This is the required Cauchy's integral formula

Now, differentiating eq. (3) w.r.t \boldsymbol{a}, we will get

$$
f^{\prime}(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{(z-a)^{2}}
$$

Again, differentiating eq. (3) w.r.t a twice, we will get

$$
f^{/ /}(a)=\frac{2!}{2 \pi i} \oint_{C} \frac{f(z) d z}{(z-a)^{3}}
$$

Hence after differentiation eq. (3) \boldsymbol{n} number of times we will get

$$
f^{n}(a)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z) d z}{(z-a)^{n+1}}
$$

This is the general form of Cauchy's integral formula.
Q. Evaluate $\oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{2}} d z$ where C is the circle (a) $|\boldsymbol{z}|=\mathbf{2}$.

Solution: Since, Cauchy's integral formula

$$
\oint_{C} \frac{f(z)}{(z-a)^{n+1}} d z=f^{n}(a) \times \frac{2 \pi i}{n!}
$$

By comparing the given integration with Cauchy's integral formula

$$
\oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{1+1}} d z=f^{1}(1) \times \frac{2 \pi i}{1!}---------(i)
$$

Now,

$$
\begin{array}{rlrl}
& f(z) & =e^{z}\left(z^{2}+1\right) \\
\Rightarrow & f^{\prime}(z) & =e^{z}(2 \mathrm{z})+e^{z}\left(z^{2}+1\right) \\
\Rightarrow & f^{\prime}(1) & =e^{1}(2)+e^{1}\left(1^{2}+1\right) \\
& =4 e
\end{array}
$$

The required integration from equation (i)

$$
\begin{aligned}
\oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{1+1}} d z & =4 e \times \frac{2 \pi i}{1!} \\
& =8 \pi i e
\end{aligned}
$$

If the integration is $\oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-3)^{2}} d z$ then the point ' \boldsymbol{a} ' $\boldsymbol{o r} \boldsymbol{z}_{\mathbf{0}}$ is outside the region. So, we can directly used Cauchy's theorem and will get the results as '0' i.e

$$
\oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{2}} d z=0
$$

Q. Prove Cauchy's integral formula for multiply-connected regions.

Q. Evaluate $\oint_{C} \frac{(z-1)}{\left(z^{2}+1\right)} d z$ where C is the circle (a) $|\mathbf{z}-\boldsymbol{i}|=\mathbf{1}$ and (b) $|\mathbf{z}|=\mathbf{2} .(2017,2+2=4)$

Solution: Since,

$$
\begin{aligned}
\frac{z-1)}{\left(z^{2}+1\right)} & =\frac{(z-1)}{(z+i)(z-i)} \\
& =\frac{1}{2 i}\left[\frac{(z-1)}{(z-i)}-\frac{(z-1)}{(z+i)}\right]
\end{aligned}
$$

So the given integration becomes,

$$
\oint_{C} \frac{z-1)}{\left(z^{2}+1\right)} d z=\frac{1}{2 i}\left[\oint_{C} \frac{(z-1)}{(z-i)} d z-\oint_{C} \frac{(z-1)}{(z+i)} d z\right]
$$

(a) When the region is $|z-i|=1$, it is found that the singular point $z=-i$ is out the region, therefore

$$
\begin{aligned}
\oint_{C} \frac{z-1)}{\left(z^{2}+1\right)} d z & =\frac{1}{2 i}\left[\oint_{C} \frac{(z-1)}{(z-i)} d z-0\right] \text { Here, } f(z)=z-1 \\
& =\frac{1}{2 i}[2 \pi i \times f(i)]=\pi(i-1)
\end{aligned}
$$

(b) When the region is $|z|=2$, it is found that both the singular point $z=-i$ and $z=i$ is inside the region, therefore

$$
\begin{aligned}
\oint_{C} \frac{z-1)}{\left(z^{2}+1\right)} d z & =\frac{1}{2 i}\left[\oint_{C} \frac{(z-1)}{(z-i)} d z--\oint_{C} \frac{(z-1)}{(z+i)} d z\right] \\
& =\frac{1}{2 i}[2 \pi i(i-1)-2 \pi i(-i-1)] \\
& =2 \pi i
\end{aligned}
$$

Q. Evaluate $\oint_{C} \frac{1}{z} d z$ where C is the circle of unit radius. $(2017,2)$

Solution: Using Cauchy integral formula

$$
\begin{aligned}
& \oint_{C} \frac{1}{(z-0)^{0+1}} d z=1 \times \frac{2 \pi i}{0!} \\
\Rightarrow \quad & \oint_{C} \frac{1}{z} d z=2 \pi i
\end{aligned}
$$

This is the required integration.

Residue theorem

Q. (a) Let $\mathrm{F}(\mathrm{z})$ be analytic inside and on a simple closed curve C except for a pole of order m at $z=a$ inside C . Prove that

$$
\frac{1}{2 \pi i} \oint_{C} F(z) d z=\lim _{z \rightarrow a} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{(z-a)^{m} F(z)\right\}
$$

(b) How would you modify the result in (a) if more than one pole were inside C?

Solution: (a)

If $F(z)$ has a pole of order m at $z=a$, then $\boldsymbol{F}(\mathbf{z})=\boldsymbol{f}(\mathbf{z}) /(\mathbf{z}-\boldsymbol{a})^{\boldsymbol{m}}$ where $f(z)$ is analytic inside and on C, and $f(a) \neq 0$. Then, by Cauchy's integral formula,

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} F(z) d z & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)^{m}} d z \\
& =\frac{f^{(m-1)}(a)}{(m-1)!} \\
& =\lim _{z \rightarrow a} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\{f(z)\} \\
& =\lim _{z \rightarrow a} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{(z-a)^{m} F(z)\right\} \\
& =R
\end{aligned}
$$

Here, R is called the residues of $F(z)$ at the poles $z=a$.
Q. Evaluate $\oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{2}} d z$ where C is the circle (a) $|z|=\mathbf{2}$.

Solution: Here, the pole $z=1$ or $a=1$ is inside the given region and the pole is order 2 i.e. $m=2$. Now, from Cauchy's integral formula

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} F(z) d z & =\lim _{z \rightarrow a} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{(z-a)^{m} F(z)\right\} \\
\Rightarrow \oint_{C} F(z) d z & =2 \pi i \times \lim _{z \rightarrow a} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{(z-a)^{m} F(z)\right\} \\
\Rightarrow \oint_{C} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{2}} d z & =2 \pi i \times \lim _{z \rightarrow 1} \frac{1}{(2-1)!} \frac{d^{2-1}}{d z^{2-1}}\left\{(z-1)^{2} \frac{e^{z}\left(z^{2}+1\right)}{(z-1)^{2}}\right\} \\
& =2 \pi i \times \lim _{z \rightarrow 1} \frac{d}{d z}\left\{e^{z}\left(z^{2}+1\right)\right\} \\
& =2 \pi i \times \lim _{z \rightarrow 1}\left\{e^{z}(2 z)+e^{z}\left(z^{2}+1\right)\right\} \\
& =2 \pi i \times\left\{e^{1}(2)+e^{1}\left(1^{2}+1\right)\right\} \\
& =8 \pi i e
\end{aligned}
$$

(b) Suppose there are two poles at $z=a_{1}$ and $z=a_{2}$ inside C , of orders m_{1} and m_{2}, respectively. Let Γ_{1} and Γ_{2} be circles inside C having radii ϵ_{1} and ϵ_{2} and centers at a_{1} and a_{2}, respectively. Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{C} F(z) d z=\frac{1}{2 \pi i} \oint_{\Gamma_{1}} F(z) d z+\frac{1}{2 \pi i} \oint_{\Gamma_{2}} F(z) d z \tag{i}
\end{equation*}
$$

If $F(z)$ has a pole of order m_{1} at $z=a_{1}$, then

$$
F(z)=\frac{f_{1}(z)}{\left(z-a_{1}\right)^{m_{1}}} \quad \text { where } f_{1}(z) \text { is analytic and } f_{1}(z) \neq 0
$$

If $F(z)$ has a pole of order m_{2} at $z=a_{2}$, then

$$
F(z)=\frac{f_{2}(z)}{\left(z-a_{2}\right)^{m_{2}}} \quad \text { where } f_{2}(z) \text { is analytic and } f_{2}(z) \neq 0
$$

So from equation (i)

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} F(z) d z & =\frac{1}{2 \pi i} \oint_{\Gamma_{1}} \frac{f_{1}(z)}{\left(z-a_{1}\right)^{m_{1}}} d z+\frac{1}{2 \pi i} \oint_{\Gamma_{2}} \frac{f_{2}(z)}{\left(z-a_{2}\right)^{m_{2}}} d z \\
& =\lim _{z \rightarrow a_{1}} \frac{1}{\left(m_{1}-1\right)!} \frac{d^{m_{1}-1}}{d z^{m_{1}-1}}\left\{\left(z-a_{1}\right)^{m_{1}} F(z)\right\}+\lim _{z \rightarrow a_{2}} \frac{1}{\left(m_{2}-1\right)!} \frac{d^{m_{2}-1}}{d z^{m_{2}-1}}\left\{\left(z-a_{1}\right)^{m_{2}} F(z)\right\} \\
& =R_{1}+R_{2}
\end{aligned}
$$

So we can write

$$
\oint_{C} F(z) d z=2 \pi i\left(R_{1}+R_{2}\right)
$$

where R_{1} and R_{2} are called the residues of $F(z)$ at the poles $z=a_{1}$ and $z=a_{2}$.

In general, if $F(z)$ has a number of poles inside C with residues R_{1}, R_{2}, \ldots, then

$$
\begin{aligned}
\oint_{C} F(z) d z & =2 \pi i\left(R_{1}+R_{2}+\cdots\right) \\
& =2 \pi i(\text { sum of the residues })
\end{aligned}
$$

This result is called the residue theorem.
Q. Evaluate $\oint_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where C is the circle (a) $|z|=4$.

Solution: The poles of

$$
\frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}}=\frac{e^{z}}{(z+i \pi)^{2}(z-i \pi)^{2}}
$$

are at $z= \pm i \pi$ inside C and are both of order two i.e. $m=2$.

Now, residue at $z=i \pi$ is

$$
\lim _{z \rightarrow i \pi} \frac{1}{1!} \frac{d}{d z}\left\{(z-i \pi)^{2} \frac{e^{z}}{(z+i \pi)^{2}(z-i \pi)^{2}}\right\}=\frac{\pi+i}{4 \pi^{3}}
$$

Similarly, residue at $z=-i \pi$ is

$$
\lim _{z \rightarrow-i \pi} \frac{1}{1!} \frac{d}{d z}\left\{(z+i \pi)^{2} \frac{e^{z}}{(z+i \pi)^{2}(z-i \pi)^{2}}\right\}=\frac{\pi-i}{4 \pi^{3}}
$$

Therefore

$$
\oint_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z=2 \pi i \text { (sum of residues) }=2 \pi i\left(\frac{\pi+i}{4 \pi^{3}}+\frac{\pi-i}{4 \pi^{3}}\right)=\frac{i}{\pi}
$$

Q. Obtain the residue of the following

1. $\mathrm{f}(\mathrm{z})=\frac{1}{z^{2}+a^{2}}$ where $a>0 \quad$ 2018, marks: 4
2. $\mathrm{f}(\mathrm{z})=\frac{e^{i z}}{z^{2}+a^{2}}$ at $z=i a \quad$ 2017, marks: 2

No need to submit. Just do it yourself as practice.

$$
\text { 3. } \mathrm{f}(\mathrm{z})=\frac{e^{\mathrm{z}}}{(z-i)^{2}} \text { at its pole 2015, marks: } 2
$$

$$
\text { 4. } \mathrm{f}(\mathrm{z})=\frac{e^{z}}{(z-2)^{3}} \text { at its pole } \quad \text { 2013, marks: } 2
$$

$$
\text { 4. } \mathrm{f}(\mathrm{z})=\frac{z^{2}}{\left(1+z^{2}\right)^{3}} \text { at its pole } \quad \text { 2020, marks: } 3
$$

Q. For a function $f(z)$ which has a pole of order m at $z=z_{0}$, show that the residue of the function at that singular point is

$$
a_{-1}=\lim _{z \rightarrow a} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{(z-a)^{m} F(z)\right\}
$$

Note: Here, since marks is 5 , so it is recommended that you should start from Cauchy's integral formula.

Power Series:

\square In mathematics, a power series (in one variable) is an infinite series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)^{1}+a_{2}(x-a)^{2}+\cdots \tag{1}
\end{equation*}
$$

where a_{n} represents the coefficient of the $n^{\text {th }}$ term and a is a constant.
\square In many situations a (the center of the series) is equal to zero, for instance when considering a Maclaurin series. In such cases, the power series takes the simpler form

$$
\sum_{n=0}^{\infty} a_{n}(x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Taylor's theorem:

If $f(x)$ is differentiable in region, then $f(x)$ can be expand around a given point \boldsymbol{a} as

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{/ /}(a)}{2!}(x-a)^{2}+\frac{f^{/ / /}(a)}{3!}(x-a)^{3}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n} \\
& =\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
\end{aligned}
$$

This is also called as power series.

Example: Any polynomial can be easily expressed as a power series around any center a.
For example $f(x)=x^{2}+2 x+3$ can be written as a
(a) power series around the center $a=0$ as

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime /}(a)}{2!}(x-a)^{2}+\frac{f^{/ / \prime}(a)}{3!}(x-a)^{3}+\cdots & & f(0)=3 \\
& =f(0)+f^{\prime}(0) x+\frac{f^{\prime /}(0)}{2!} x^{2}+\frac{f^{/ / /}(0)}{3!} x^{3}+\cdots & & f^{1}(0)=(2 x+2)_{a=0}=2 \\
& =3+2 x+x^{2}+0+0+\cdots & & \frac{f^{\prime /}(0)}{2!}=\frac{(2)_{a=0}}{2}=1
\end{aligned}
$$

$$
=3+2 x+x^{2}
$$

(b) power series around the center $a=1$ as

$$
\begin{array}{rlrl}
f(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime /}(1)}{2!}(x-1)^{2}+\cdots & f(1)=6 \\
& =6+4(x-1)+(x-1)^{2}+0+0 & & f^{\prime}(1)=4 \\
& =6+4 x-4+x^{2}-2 x+1 & \frac{f^{\prime /}(1)}{2!}=1
\end{array}
$$

Let represent the exponential function $f(x)=e^{x}$ by the infinite polynomial (power series).
$>$ Since, here

$$
f^{\prime}(x)=f^{/ /}(x)=f^{/ / /}(x)=e^{x}
$$

and

$$
f^{\prime}(0)=f^{/ /}(0)=f^{/ / /}(0)=e^{0}=1
$$

Now, the function can be represented as a power series using the Maclaurin's formula with $a_{n}=\frac{f^{n}(a)}{n!}=\frac{1}{n!}$

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

$$
f_{0}(x)
$$

series

Taylor's theorem:

If $f(z)$ is analytic inside a circle C with center at a, then for all z inside C

$$
\begin{aligned}
f(z) & =f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime /}(a)}{2!}(z-a)^{2}+\frac{f^{\prime / \prime}(a)}{3!}(z-a)^{3}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(z-a)^{n} \\
& =\sum_{n=0}^{\infty} a_{n}(z-a)^{n} \quad \text { This is a power series }
\end{aligned}
$$

This is called Taylor's theorem and the series is called a Taylor series or expansion for $f(z)$.

- The region of convergence of the series is given by $|z-a|<R$, where the radius of convergence R is the distance from \boldsymbol{a} to the nearest singularity of the function $f(z)$. On $|z-a|=R$, the series may or may not converge. For $|z-a|>R$, the series diverges.
- If the nearest singularity of $f(z)$ is at infinity, the radius of convergence is infinite, i.e., the series converges for all z .
- If $a=0$ in Taylor series, the resulting series is often called a Maclaurin series.

Some special series:

The following list shows some special series together with their regions of convergence

$$
\begin{array}{ll}
\text { 1. } e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots & |z|<\infty \\
\text { 2. } \sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots & |z|<\infty \\
\text { 3. } \cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots & |z|<\infty \\
\text { 4. } \ln (1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots & |z|<1 \\
\text { 5. }(1+z)^{p}=1+p z+\frac{p(p-1)}{2!} z^{2}+\cdots & |z|<1 \\
\text { - } \frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots & |z|<1
\end{array}
$$

Taylor's theorem Proof: Let \boldsymbol{z} be any point inside \boldsymbol{C}. Construct a circle $\boldsymbol{C}_{\mathbf{1}}$ with center at \boldsymbol{a} and enclosing \mathbf{z}. Then, by Cauchy's integral formula,

$$
\begin{align*}
f(z) & =\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-z)} d w \tag{1}\\
f^{n}(z) & =\frac{n!}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-z)^{n+1}} d w \tag{2}
\end{align*}
$$

We have

$$
\begin{aligned}
\frac{1}{(w-z)} & =\frac{1}{(w-a)-(z-a)}=\frac{1}{(w-a)}\left\{\frac{1}{1-(z-a) /(w-a)}\right\} \\
& =\frac{1}{(w-a)}\left\{1+\left(\frac{z-a}{w-a}\right)+\left(\frac{z-a}{w-a}\right)^{2}+\cdots+\left(\frac{z-a}{w-a}\right)^{n-1}+\left(\frac{z-a}{w-a}\right)^{n}+\left(\frac{z-a}{w-a}\right)^{n+1}+\left(\frac{z-a}{w-a}\right)^{n+2}+\cdots\right\} \\
& =\frac{1}{(w-a)}\left\{1+\left(\frac{z-a}{w-a}\right)+\left(\frac{z-a}{w-a}\right)^{2}+\cdots+\left(\frac{z-a}{w-a}\right)^{n-1}+\left(\frac{z-a}{w-a}\right)^{n}\left[1+\left(\frac{z-a}{w-a}\right)^{1}+\left(\frac{z-a}{w-a}\right)^{2}+\cdots\right]\right\} \\
& =\frac{1}{(w-a)}\left\{1+\left(\frac{z-a}{w-a}\right)+\left(\frac{z-a}{w-a}\right)^{2}+\cdots+\left(\frac{z-a}{w-a}\right)^{n-1}+\left(\frac{z-a}{w-a}\right)^{n}\left[\frac{1}{1-(z-a) /(w-a)}\right]\right\} \\
07-09-2021 & =\frac{1}{(w-a)}\left\{1+\left(\frac{z-a}{w-a}\right)+\left(\frac{z-a}{w-a}\right)^{2}+\cdots+\left(\frac{z-a}{w-a}\right)^{n-1}+\left(\frac{z-a}{w-a}\right)^{n} \frac{(w-a)}{(w-z)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{(w-a)}+\frac{z-a}{(w-a)^{2}}+\frac{(z-a)^{2}}{(w-a)^{3}}+\cdots+\frac{(z-a)^{n-1}}{(w-a)^{n}}+\left(\frac{z-a}{w-a}\right)^{n} \frac{1}{(w-z)} \tag{3}
\end{equation*}
$$

Now, multiplying both side of equation (3) by $f(w) / 2 \pi i$ and taking contour integration, thereafter using equation (1) we get

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-a)} d w+\frac{(z-a)}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-a)^{2}} d w+\cdots+\frac{(z-a)^{n-1}}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-a)^{n}} d w+U_{n} \tag{4}
\end{equation*}
$$

Where

$$
U_{n}=\frac{1}{2 \pi i} \oint_{C_{1}}\left(\frac{z-a}{w-a}\right)^{n} \frac{f(w)}{(w-z)} d w
$$

Now, using equation (2), equation (4) becomes

$$
\begin{equation*}
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime /}(a)}{2!}(z-a)^{2}+\frac{f^{/ / /}(a)}{3!}(z-a)^{3}+\cdots+\frac{f^{n-1}(a)}{(n-1)!}(z-a)^{n-1}+U_{n} \tag{5}
\end{equation*}
$$

If we can now show that $\lim _{n \rightarrow \infty} U_{n}=0$, we will have proved the required result. To do this, we note that since w is on C_{1},

$$
\left|\frac{z-a}{w-a}\right|=\gamma<1
$$

Where γ is a constant.

Also, we have $|f(w)|<M$, where M is a constant, and

$$
|w-z|=|(w-a)-(z-a)| \geq r_{1}-|z-a|
$$

where r_{1} is the radius of C_{1}. Now taking modulus of U_{n} we have

$$
\begin{aligned}
\left|U_{n}\right| & =\frac{1}{2 \pi}\left|\oint_{C_{1}}\left(\frac{z-a}{w-a}\right)^{n} \frac{f(w)}{(w-z)} d w\right| \\
& \leq \frac{1}{2 \pi}\left|\frac{z-a}{w-a}\right|^{n} \frac{|f(w)|}{|(w-z)|}\left|\oint_{C_{1}} d w\right| \quad\left|\oint_{C} f(z) d z\right| \leq M L \\
& =\frac{1}{2 \pi} \frac{r^{n} M}{r_{1}-|z-a|} 2 \pi r_{1} \\
& =\frac{\gamma^{n} M r_{1}}{r_{1}-|z-a|}
\end{aligned}
$$

where $|f(z)| \leq M$, i.e., M is an upper bound of $|f(z)|$ on C , and L is the length of C .

$$
\begin{aligned}
& \text { Or simply } \\
&\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \\
&|2+(-3)| \leq|2|+|-3| \\
&|-1| \leq 2+3 \\
& 1 \leq 5
\end{aligned}
$$

Now, taking the limit, $\lim _{n \rightarrow \infty}\left|U_{n}\right|=\lim _{n \rightarrow \infty} \frac{r^{n} M r_{1}}{r_{1}-|z-a|}=0$
So from equation (5)

$$
f(z)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime /}(a)}{2!}(x-a)^{2}+\frac{f^{/ / /}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{n-1}(a)}{(n-1)!}(x-a)^{n-1}
$$

Hence proved

Power series

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} Z_{n}
$$

Circle of convergence

The power series is convergence when the reference point $\left(z_{0}\right)$ about which we do the expansion is such that

$$
\left|z-z_{0}\right|<R
$$

Here, the R is called radius of convergence.

Now, using using ratio test,

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{Z_{n+1}}{Z_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(z-z_{0}\right)^{n+1}}{a_{n}\left(z-z_{0}\right)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\left|z-z_{0}\right|
\end{aligned}
$$

Ratio test

Let $\lim _{n \rightarrow \infty}\left|\frac{U_{n+1}}{U_{n}}\right|=L$. Then $\sum U_{n}$
converges if $\mathrm{L}<1$ and diverges if $\mathrm{L}>1$. If $\mathrm{L}=1$, the test fails.

So according to ratio test the power series will be convergence when

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\left|z-z_{0}\right|<1 \\
& =l \times R<1
\end{aligned}
$$

\therefore Radius of convergence $\mathbf{R}=\frac{\mathbf{1}}{\boldsymbol{l}}$

Q1. Let $f(z)=\ln (1+z)$, then (a) Expand $f(z)$ in a Taylor series about $z=0$.
(b) Determine the region of convergence for the series in (a).
(c) Expand $\ln (1+z) /(1-z)$ in a Taylor series about $z=0$.

Solution: We know the Taylor expansion

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime /}(a)}{2!}(z-a)^{2}+\frac{f^{/ / /}(a)}{3!}(z-a)^{3}+\cdots
$$

(a) We need to expand $f(z)$ in a Taylor series about $z=0$. So,

$$
\begin{equation*}
f(z)=f(0)+f^{\prime}(0) z+\frac{f^{/ /}(0)}{2!} z^{2}+\frac{f^{/ / /}(0)}{3!} z^{3}+\cdots \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
f(z) & =\ln (1+z) ; & f(0) & =0 \\
f^{\prime}(z) & =1 /(1+z) ; & f^{\prime}(0) & =1 \\
f^{\prime /}(z) & =-1 /(1+z)^{2} ; & f^{\prime /}(0) & =-1 \\
f^{\prime / /}(z) & =(-1)(-2) /(1+z)^{3} ; & f^{\prime / /}(0) & =2!
\end{aligned}
$$

Now, from equation (1)

$$
\begin{aligned}
f(z) & =f(0)+f^{\prime}(0) z+\frac{f^{/ /}(0)}{2!} z^{2}+\frac{f^{/ / /}(0)}{3!} z^{3}+\cdots \\
& =0+z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots \\
& =z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots
\end{aligned}
$$

$$
f(z)=\ln (1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots
$$

(b) The $n^{\text {th }}$ term of the Taylor expansion is $U_{n}=(-1)^{n-1} z^{n} / n$. Using using ratio test,

$$
\lim _{n \rightarrow \infty}\left|\frac{U_{n+1}}{U_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n z}{n+1}\right|=\lim _{n \rightarrow \infty}\left|\frac{z}{\frac{n+1}{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{z}{1+\frac{1}{n}}\right|=|z|
$$

and the series converges for $|z|<1$.

Ratio test

Let $\lim _{n \rightarrow \infty}\left|\frac{U_{n+1}}{U_{n}}\right|=L$.
converges (absolutely) if $\mathrm{L}<1$ and diverges if $\mathrm{L}>1$. If $\mathrm{L}=1$, the test fails.
(c) From the result in (a) we have, on replacing z by $-z$,

$$
\begin{aligned}
& \ln (1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots \\
& \ln (1-z)=-z-\frac{z^{2}}{2}-\frac{z^{3}}{3}-\frac{z^{4}}{4}-\cdots
\end{aligned}
$$

both series convergent for $|z|<1$. By subtraction, we have

$$
\ln \left(\frac{1+z}{1-z}\right)=2\left(z+\frac{z^{3}}{3}+\frac{z^{5}}{5}+\cdots=\sum_{n=0}^{\infty} \frac{2 z^{2 n+1}}{2 n+1}\right.
$$

Which converges for $|z|<1$

Q1. (a) Expand $f(z)=\sin z$ in a Taylor series about $z=\pi / 4$.
Solution: We know the Taylor expansion

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime /}(a)}{2!}(z-a)^{2}+\frac{f^{/ / /}(a)}{3!}(z-a)^{3}+\cdots
$$

We need to expand $f(z)$ in a Taylor series about $z=\pi / 4$. So,

$$
\begin{equation*}
f(z)=f(\pi / 4)+f^{\prime}(\pi / 4)(z-\pi / 4)+\frac{f^{\prime /}(\pi / 4)}{2!}(z-\pi / 4)^{2}+\frac{f^{/ / /}(\pi / 4)}{3!}(z-\pi / 4)^{3}+\cdots \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
f(z)=\sin z ; & f(\pi / 4)=\sqrt{2} / 2 \\
f^{\prime}(z)=\cos z ; & f(\pi / 4)=\sqrt{2} / 2 \\
f^{\prime /}(z)=-\sin z ; & f(\pi / 4)=-\sqrt{2} / 2 \\
f^{\prime / /}(z)=-\cos z ; & f(\pi / 4)=-\sqrt{2} / 2
\end{aligned}
$$

Now, from equation (1)

$$
\begin{aligned}
\sin z & =f(\pi / 4)+f^{\prime}(\pi / 4)(z-\pi / 4)+\frac{f^{/ /}(\pi / 4)}{2!}(z-\pi / 4)^{2}+\cdots \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(z-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2.2!}\left(z-\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{2.3!}\left(z-\frac{\pi}{4}\right)^{3}+\cdots \\
& =\frac{\sqrt{2}}{2}\left(1+\left(z-\frac{\pi}{4}\right)-\frac{1}{2!}\left(z-\frac{\pi}{4}\right)^{2}-\frac{1}{3!}\left(z-\frac{\pi}{4}\right)^{3}+\cdots\right.
\end{aligned}
$$

Q1. (a) Expand $f(z)=\frac{1}{1-z}$ in a Taylor series about $z=i$. Also find the radius of convergence.
Solution: We know the Taylor expansion

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime /}(a)}{2!}(z-a)^{2}+\frac{f^{/ / /}(a)}{3!}(z-a)^{3}+\cdots
$$

We need to expand $f(z)$ in a Taylor series about $z=i$. So,

$$
\begin{equation*}
f(z)=f(i)+f^{\prime}(i)(z-i)+\frac{f^{\prime /}(i)}{2!}(z-i)^{2}+\frac{f^{\prime / /}(i)}{3!}(z-i)^{3}+\cdots \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
f(z)=1 / 1-z ; & f(i)=1 / 1-i \\
f^{/}(z)=1 /(1-z)^{2} ; & f^{/}(i)=1 /(1-i)^{2} \\
f^{/ /}(z)=2 /(1-z)^{3} ; & f^{/ /}(i)=2 /(1-i)^{3} \\
f^{/ / /}(z)=3!/(1-z)^{4} ; & f / / /(i)=3!/(1-i)^{4}
\end{aligned}
$$

Now, from equation (1)

$$
\begin{aligned}
f(z) & =\frac{1}{1-i}\left[1+\frac{z-i}{1-i}+\frac{(z-i)^{2}}{(1-i)^{2}}+\cdots\right] \\
& =\sum_{n=0}^{\infty} \frac{(z-i)^{n}}{(1-i)^{n+1}} \\
& =\sum_{n=0}^{\infty} a_{n}(z-i)^{n} \quad a_{n}=\frac{1}{(1-i)^{n+1}}
\end{aligned}
$$

The required Taylor's series is

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-i)^{n} \quad a_{n}=\frac{1}{(1-i)^{n+1}}
$$

Now, using using ratio test,

$$
\begin{aligned}
l=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{1-i}\right| & =\lim _{n \rightarrow \infty}\left|\frac{1+i}{(1+i)(1-i)}\right| \\
& =\left|\frac{1+i}{2}\right| \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

So, the radius of convergence.

$$
\mathrm{R}=\frac{1}{l}=\sqrt{2}
$$

Q. Find the first three terms of Taylor expansion of $f(z)=1 / z^{2}+4$ about $z=-i$ and give the region of convergence. 2021

Laurent Series

Laurent's theorem:

Suppose $f(z)$ is analytic inside and on the boundary of the ring-shaped region R bounded by two concentric circles C_{1} and C_{2} with center at a and respective radii r_{1} and $r_{2}(r 1>r 2)$ (see Fig. 6-5). Then for all z in R,

$$
\begin{aligned}
f(z) & =\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
& =\cdots+\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\frac{a_{-n+1}}{\left(z-z_{0}\right)^{n-1}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{n}\left(z-z_{0}\right)^{1}+\cdots
\end{aligned}
$$

Where

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-a)^{n+1}} d w \\
& a_{-n}=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w)}{(w-a)^{-n+1}} d w \\
& n=1,2,2,3 \ldots .
\end{aligned}
$$

Q. Find Laurent series about the indicated singularity for each of the following functions

1. $f(z)=\frac{\sin z}{z} ; \quad \mathrm{z}=0$

1. solution.:

$$
\begin{aligned}
f(z) & =\frac{\sin z}{z} \\
& =\frac{1}{z}\left[z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots\right] \\
& =1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}+\cdots \\
& =\text { No principal part }
\end{aligned}
$$

So, this is removable singularity
So, isolated singularity of order 1.

3. $f(z)=\frac{e^{2 z}}{(z-1)^{3}} ; \quad \mathrm{z}=1$

3. solution.:

Let $z-1=u$. Then $z=u+1$ and

$$
\begin{aligned}
f(z) & =\frac{e^{2 z}}{(z-1)^{3}} \\
& =\frac{e^{2(u+1)}}{(u)^{3}} \\
& =\frac{e^{2}}{u^{3}} \cdot e^{2 u} \\
& =\frac{e^{2}}{u^{3}}\left[1+2 u+\frac{(2 u)^{2}}{2!}+\cdots\right]
\end{aligned}
$$

$=\frac{e^{2}}{(z-1)^{3}}+\frac{2 e^{2}}{(z-1)^{2}}+\frac{2 e^{2}}{(z-1)}+\frac{4 e^{2}}{3}+\frac{2 e^{2}}{3}(z-1)+\cdot$
$z=1$ is a pole of order 3 , or triple pole. The series converges for all values of $z \neq 1$.
Q. Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in a Laurent series valid for $1<|z|<2$

Ans.: The given function

$$
f(z)=\frac{1}{(z-2)}-\frac{1}{(z-1)}
$$

- $\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots \quad|z|<1$

Here, the given region

$$
|z|<2 \text { so } \quad \frac{|z|}{2}<1
$$

and

$$
|z|>1 \text { so } \quad \frac{1}{|z|}<1
$$

We have to remember these two condition while expanding the function

$$
f(z)=\left(-\frac{1}{2}\right)\left[1+\frac{z}{2}+\left(\frac{z}{2}\right)^{2}+\cdots\right]-\frac{1}{z}\left[1+\frac{1}{z}+\left(\frac{1}{z}\right)^{2}+\cdots\right]
$$

Now,

$$
f(z)=\frac{1}{(-2)\left[1-\frac{Z}{2}\right]}-\frac{1}{z\left(1-\frac{1}{Z}\right)}
$$

$$
\begin{aligned}
& =\ldots-\left(\frac{1}{z}\right)^{3}-\left(\frac{1}{z}\right)^{2}-\frac{1}{z}-\frac{1}{2}-\frac{z}{2^{2}}-\frac{z^{2}}{z^{3}} \\
& =\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
\end{aligned}
$$

Consequences of Cauchy Residue Theorem

Evaluation of Definite Integrals

Evaluation of definite integrals

\square The evaluation of definite integrals is often achieved by using the residue theorem together with a suitable function $\boldsymbol{f}(\mathbf{z})$ and a suitable closed path or contour \boldsymbol{C}, the choice of which may require great ingenuity.

The following types are most common in practice:

1. $\int_{0}^{2 \pi} F(\sin \theta, \cos \theta) d \theta$; where $\mathrm{F}(\sin \theta, \cos \theta)$ is a rational function of $\sin \theta$ and $\cos \theta$.
2. $\int_{-\infty}^{+\infty} F(x) d x \quad$; where $\mathrm{F}(x)$ is a rational function.
3. $\int_{-\infty}^{+\infty} F(x)\left\{\begin{array}{c}\cos m x \\ \sin m x\end{array}\right\} d x$; where $\mathrm{F}(x)$ is a rational function.
Convert the rational
function into a suitable
complex function i.e. $\mathrm{F}(\mathrm{z})$

Q.Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$

Solution:

Let $z=e^{i \theta}$. Then we know

$$
\begin{aligned}
& \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{z-z^{-1}}{2 i} \\
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{z+z^{-1}}{2}
\end{aligned}
$$

And

$$
z=e^{i \theta}
$$

$\therefore \frac{d z}{d \theta}=i e^{i \theta}$
$\Rightarrow d \theta=\frac{d z}{i e^{i \theta}}$
$\Rightarrow d \theta=\frac{d z}{i z}$

so that

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\oint_{C} \frac{\frac{d z}{i z}}{5+4 \cdot\left(z-z^{-1}\right) / 2 i}
$$

$$
\begin{equation*}
=\oint_{C} \frac{d z}{2 z^{2}+5 i z-2}=\oint_{C} f(z) d z \tag{1}
\end{equation*}
$$

where C is the circle of unit radius with center at the origin as shown in fig.
Now the poles of $f(z) d z$

$$
\begin{aligned}
& z=\frac{-5 i \pm \sqrt{(5 i)^{2}-4 \times 2 \times(-2)}}{2 \times 2} \\
& z=\frac{-5 i \pm 3 i}{4} \\
& z=-\frac{1}{2} i,-2 i
\end{aligned}
$$

Therefore we get two poles

$$
z_{1}=-\frac{1}{2} i \quad z_{2}=-2 i
$$

But out of these two, only z_{1} lies inside C Now residue of $f(z)$ at $z_{1}=-\frac{1}{2} i$

$$
\operatorname{Res}\left[f(z),\left(-\frac{1}{2} i\right)\right]=\lim _{z \rightarrow z_{1}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d^{m-1}}\left\{(z-a)^{m} f(z)\right\}
$$

$$
\begin{aligned}
& =\lim _{z \rightarrow-\frac{1}{2} i} \frac{1}{(1-1)!} \frac{d^{1-1}}{d^{1-1}}\left\{\left(z+\frac{1}{2} i\right)^{1} \cdot \frac{1}{2 z^{2}+5 i z-2}\right\} \\
& =\lim _{z \rightarrow-\frac{1}{2} i}\left(z+\frac{1}{2} i\right) \cdot \frac{1}{2 \times\left(z+\frac{1}{2} i\right)(z+2 i)} \\
& =\lim _{z \rightarrow-\frac{1}{2} i} \frac{1}{2(z+2 i)} \\
& =\frac{1}{2\left(-\frac{i}{2}+2 i\right)}
\end{aligned}
$$

$$
\operatorname{Res}\left[f(z),\left(-\frac{1}{2} i\right)\right]=\frac{1}{3 i}
$$

Now, apply Cauchy residue theorem, from equation (1)

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta} & =\oint_{C} \frac{d z}{2 z^{2}+5 i z-2} \\
& =2 \pi i \times \operatorname{Res}\left[f(z),\left(-\frac{1}{2} i\right)\right] \\
& =2 \pi i \times \frac{1}{3 i} \\
& =\frac{2}{3} \pi
\end{aligned}
$$

This is the required integration.

* Suppose the given integral is $\int_{-\infty}^{+\infty} F(x) d x$
- Consider $\oint_{C} f(z) d z$ along a contour C consisting of the line along the x axis from $-R$ to $+R$ and the semicircle Γ above the x axis having this line as diameter.

Step 1: $\quad F(x) \Rightarrow F(z)$
Step 2: Choose the contour i.e.

$$
\begin{array}{r}
\oint_{C} F(z) d z=\int_{\Gamma} F(z) d z+\int_{-R}^{+R} F(x) d x \\
2 \pi i \times \sum_{k=1}^{n} \operatorname{Res}\left[F(z), z_{k}\right]=\int_{\Gamma} F(z) d z+\int_{-R}^{+R} F(x) d x
\end{array}
$$

Step 3: We will take limit $R \rightarrow \infty$. After taking limit we will found that

$$
\lim _{R \rightarrow \infty} \int_{\Gamma} F(z) d z=0
$$

This implies that

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} \int_{-R}^{+R} F(x) d x=2 \pi i \times \sum \operatorname{Res}\left[F(z), z_{k}\right] \\
& \Rightarrow \int_{-\infty}^{+\infty} F(x) d x=2 \pi i \times \sum \operatorname{Res}\left[F(z), z_{k}\right]
\end{aligned}
$$

This is the required integration

Evaluation of definite integrals: $\int_{-\infty}^{+\infty} F(x) d x$

Q.Evaluate $\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{6}+1\right)}$

Solution:

$$
\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{6}+1\right)}=\oint_{C} \frac{d z}{\left(z^{6}+1\right)}
$$

where the contour C consisting of the line along the x axis from $-R$ to $+R$ and the semicircle Γ above the x axis having this line as diameter.

Now poles of $f(z)=1 /\left(z^{6}+1\right)$ are (i.e. solution of $\left.z^{6}+1=0\right)$

$$
e^{\pi i / 6}, e^{3 \pi i / 6}, e^{5 \pi i / 6}, e^{7 \pi i / 6}, e^{9 \pi i / 6} \text { and } e^{11 \pi i / 6}
$$

Out of these 6 poles only $e^{\pi i / 6}, e^{3 \pi i / 6}$ and $e^{5 \pi i / 6}$ are lies inside the contour.

Now residues at poles $e^{\pi i / 6}, e^{3 \pi i / 6}$ and $e^{5 \pi i / 6}$

$$
\begin{aligned}
\operatorname{Res}\left[f(z),\left(e^{\pi i / 6}\right)\right] & =\lim _{z \rightarrow e^{\pi i / 6}}\left\{\left(z-e^{\pi i / 6}\right) \cdot \frac{1}{z^{6}+1}\right\} \\
& =\lim _{z \rightarrow e^{\pi i / 6}} \frac{1}{6 z^{5}} \\
& =\frac{1}{6} e^{-5 \pi i / 6}
\end{aligned}
$$

$$
z^{6}=\left(e^{\pi i / 6}\right)^{6}=e^{i \pi}=\cos (i \pi)+i \sin (i \pi)=-1
$$

L'Hospital's rule

If $\lim _{z \rightarrow c} \frac{f(z)}{g(z)}$ undetermined i.e.

$$
\lim _{z \rightarrow c} \frac{f(z)}{g(z)}=\frac{0}{0} \quad \text { or } \quad \lim _{z \rightarrow c} \frac{f(z)}{g(z)}=\frac{\infty}{\infty}
$$

Similarly

$$
\operatorname{Res}\left[f(z),\left(e^{3 \pi i / 6}\right)\right]=\lim _{z \rightarrow e^{3 \pi i / 6}}\left\{\left(z-e^{3 \pi i / 6}\right) \cdot \frac{1}{z^{6}+1}\right\}=\frac{1}{6} e^{-5 \pi i / 2}
$$

and

$$
\operatorname{Res}\left[f(z),\left(e^{5 \pi i / 6}\right)\right]=\lim _{z \rightarrow e^{5 \pi i / 6}}\left\{\left(z-e^{5 \pi i / 6}\right) \cdot \frac{1}{z^{6}+1}\right\}=\frac{1}{6} e^{-25 \pi i / 6}
$$

Thus, from Cauchy residue theorem

$$
\begin{gather*}
\oint_{C} \frac{d z}{\left(z^{6}+1\right)}=2 \pi i\left\{\frac{1}{6} e^{-5 \pi i / 6}+\frac{1}{6} e^{-5 \pi i / 2}+\frac{1}{6} e^{-25 \pi i / 6}\right\} \\
\oint_{C} \frac{d z}{\left(z^{6}+1\right)}=2 \pi i\{-\cos 30-i \sin 30+0-i+\cos 30-i \sin 30\} \\
\Rightarrow \int_{\Gamma} \frac{d z}{\left(z^{6}+1\right)}+\int_{-R}^{+R} \frac{d x}{\left(x^{6}+1\right)}=\frac{2 \pi}{3} \quad-------------(1) \tag{1}\\
\Rightarrow I_{1}+I_{2}=\frac{2 \pi}{3}
\end{gather*}
$$

Now

$$
I_{1}=\int_{\Gamma} \frac{d z}{\left(z^{6}+1\right)}=\int_{\Gamma} \frac{i R e^{i \theta} d \theta}{R^{6} e^{i 6 \theta}+1}
$$

$$
\text { or } \quad\left|I_{1}\right| \leq \int_{\Gamma} \frac{\left|i R e^{i \theta} d \theta\right|}{\left|R^{6} e^{i 6 \theta}+1\right|} \rightarrow \text { convergent }
$$

$$
e g \cdot|5-3-1| \leq\{|5|+|-3|+|-1|\}
$$

Therefore when the limit $R \rightarrow \infty$, then I_{1} becomes

$$
\lim _{R \rightarrow \infty}\left|I_{1}\right|=\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{\left|i R e^{i \theta} d \theta\right|}{\left|R^{6} e^{i 6 \theta}+1\right|}=0
$$

Now taking limit on both side of equation (1)

$$
\begin{array}{r}
\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{d z}{\left(z^{6}+1\right)}+\lim _{R \rightarrow \infty} \int_{-R}^{+R} \frac{d x}{\left(x^{6}+1\right)}=\frac{2 \pi}{3} \\
\Rightarrow 0+\lim _{R \rightarrow \infty} \int_{-R}^{+R} \frac{d x}{\left(x^{6}+1\right)}=\frac{2 \pi}{3} \\
\Rightarrow \int_{-\infty}^{+\infty} \frac{d x}{\left(x^{6}+1\right)}=\frac{2 \pi}{3}
\end{array}
$$

This is the required integration.

$$
\text { Also, } \int_{-\infty}^{+\infty} \frac{d x}{\left(x^{6}+1\right)}=\frac{\pi}{3}
$$

Q.Evaluate $\int_{-\infty}^{+\infty} \frac{\cos m x d x}{\left(x^{2}+1\right)}$ where $m>0$.

Solution:

Consider

$$
\int_{-\infty}^{+\infty} \frac{\cos m x d x}{\left(x^{2}+1\right)}=\oint_{C} \frac{e^{i m z} d z}{\left(z^{2}+1\right)}
$$

Where C is a contour as shown in figure.
The function $f(z)=\frac{e^{i m z}}{\left(z^{2}+1\right)}$ has simple pole at $z= \pm i$
Out of these two poles only $z=+i$ lies within the contour C
Now, from Cauchy residue theorem

$$
\begin{gather*}
\left.\oint_{C} \frac{e^{i m z}}{\left(z^{2}+1\right)} d z=2 \pi i \times \operatorname{Res}[f(z), i)\right] \\
\int_{\Gamma} \frac{e^{i m z}}{\left(z^{2}+1\right)} d z+\int_{-R}^{+R} \frac{e^{i m z}}{\left(x^{2}+1\right)} d x=2 \pi i \times \lim _{z \rightarrow i}\left\{(z-i) \cdot \frac{e^{i m z}}{(z-i)(z+i)}\right\} \tag{1}
\end{gather*}
$$

$$
\int_{\Gamma} \frac{e^{i m z}}{\left(z^{2}+1\right)} d z+\int_{-R}^{+R} \frac{\cos m x}{\left(x^{2}+1\right)} d x+i \int_{-R}^{+R} \frac{\sin m x}{\left(x^{2}+1\right)} d x=\frac{\pi}{e^{m}}
$$

Here

$$
\begin{array}{r}
\int_{\Gamma} \frac{e^{i m z}}{\left(z^{2}+1\right)} d z+\int_{-R}^{+R} \frac{\cos m x}{\left(x^{2}+1\right)} d x=\frac{\pi}{e^{m}} \\
\Rightarrow I_{1}+I_{2}=\frac{\pi}{e^{m}}
\end{array}
$$

Now

$$
\begin{aligned}
I_{1}=\int_{\Gamma} \frac{e^{i m z}}{\left(z^{2}+1\right)} d z & =\int_{\Gamma} \frac{e^{i m R(\cos \theta+i \sin \theta)} R i e^{i \theta} d \theta}{R^{2} e^{2 i \theta}+1} \\
\left|I_{1}\right| & \leq \int_{\Gamma} \frac{e^{|i m R(\cos \theta+i \sin \theta)|}\left|R i e^{i \theta}\right| d \theta}{\left|R^{2} e^{2 i \theta}+1\right|} \\
\left|I_{1}\right| & \leq \int_{\Gamma} \frac{e^{-R \sin \theta} R d \theta}{\left|R^{2} e^{2 i \theta}+1\right|}
\end{aligned}
$$

Therefore when the limit $R \rightarrow \infty$, then I_{1} becomes

$$
\lim _{R \rightarrow \infty}\left|I_{1}\right|=\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{e^{-R \sin \theta} R d \theta}{\left|R^{2} e^{2 i \theta}+1\right|}=0
$$

Now taking limit on both side of equation (1)

$$
\lim _{R \rightarrow \infty} \int_{\Gamma} \frac{e^{i m z}}{\left(z^{2}+1\right)} d z+\lim _{R \rightarrow \infty} \int_{-R}^{+R} \frac{e^{i m z}}{\left(x^{2}+1\right)} d x=\frac{\pi}{e^{m}}
$$

$$
\Rightarrow \int_{-\infty}^{+\infty} \frac{e^{i m z}}{\left(x^{2}+1\right)} d x=\frac{\pi}{e^{m}}
$$

This is the required integration.

$$
\text { Also, } \int_{0}^{+\infty} \frac{e^{i m z}}{\left(x^{2}+1\right)} d x=\frac{\pi}{e^{m}}
$$

