3 (Sem-3/CBCS) MAT HC 2

Z (the group d202;ers) under ordinary

(Held in 2022)

end tant MATHEMATICS world

decomposit (erwonoH) ermutation into a product of 2-cycles is not unique.

Paper: MAT-HC-3026

(Group Theory-I)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 10 = 10$
 - Give the condition on n under which the set $\{1, 2, 3, ..., n-1\}$, n > 1 is a group under multiplication modulo n.
 - (b) Define a binary operation on the set $\mathbb{R}^n = \{(a_1, a_2, ..., a_n) : a_1, a_2, ..., a_n \in \mathbb{R}\}$ for which it is a group.

- (c) What is the centre of the dihedral group of order 2n?
- (d) Write the generators of the cyclic group \mathbb{Z} (the group of integers) under ordinary addition.
- (e) Show by an example that the decomposition of a permutation into a product of 2-cycles is not unique.
- (f) Find the cycles of the permutation:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$$

(g) Find the order of the permutation:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 1 & 3 \end{pmatrix}$$

(h) Let G be the multiplicative group of all non-singular $n \times n$ matrices over \mathbb{R} and let \mathbb{R}^* be the multiplicative group of all non-zero real numbers. Define a homomorphism from G to \mathbb{R}^* .

- (i) What do you mean by an isomorphism between two groups?
- (j) State the second isomorphism theorem.
- 2. Answer the following questions: 2×5=10
 - (a) Let G be a group and $a \in G$. Show that $\langle a \rangle$ is a subgroup of G.
- (b) If G is a finite group, then order of any element of G divides the order of G.

 Justify whether this statement is true or false.
 - (c) Show that a group of prime order cannot have any non-trivial subgroup. Is it true for a group of finite composite order?
- (d) Consider the mapping ϕ from the group of real numbers under addition to itself given by $\phi(x) = [x]$, the greatest integer less than or equal to x. Examine whether ϕ is a homomorphism.

- (e) Let ϕ be an isomorphism from a group G onto a group H. Prove that ϕ^{-1} is also an isomorphism from H onto G.
- 3. Answer the following questions: 5×4=20
 - (a) Show that a finite group of even order has at least one element of order 2.

(b) If Gis a finite 70up then order of any

Let N be a normal subgroup of a group G. Show that G/N is abelian if and only if for all $x, y \in G$, $xyx^{-1}y^{-1} \in N$.

(b) Show that if a cyclic subgroup K of a group G is normal in G, then every subgroup of K is normal in G.

of real numbers onder addition to itself

Show that converse of Lagrange's theorem holds in case of finite cyclic groups.

(c) Consider the group $G = \{1, -1\}$ under multiplication. Define $f: \mathbb{Z}' \to G$ by f(x) = 1, if n is even

bbo si n jeneral. Also show

morphism from the strong of \mathbb{Z} to G. At is a homomorphism from \mathbb{Z} to G.

if and only if HK = KH.

- (d) Let $f: G \to G'$ be a homomorphism. Let $a \in G$ be such that o(a) = n and o(f(a)) = m. Prove that o(f(a))/o(a), and if f is one-one, then m = n.
- 4. Answer the following questions: 10×4=40
 - (a) Let G be a group and $x, y \in G$ be such that $xy^2 = y^3x$ and $yx^2 = x^3y$. Then show that x = y = e, where e is the identity element of G.

que Consider the go ip G = [1,12] under

multiplication. Define fire G by

Give an example to show that the product of two subgroups of a group is not a subgroup in general. Also show that if H and K are two subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. 2+8=10

(b) Prove that the order of a cyclic group is equal to the order of its generator.

10

o(f(a)) = m Prove that o(f(a))/o(a),

Let H be a non-empty subset of a group G. Define $H^{-1} = \{h^{-1} \in G : h \in H\}$. Show that

- doubte (i) if H is a subgroup of G, then $HH = H, H = H^{-1} \text{ and } HH^{-1} = H;$
- then $(HK)^{-1} = K^{-1}H^{-1}$. 5+5=10

(c) Let G be a group and Z(G) be the centre of G. If G/Z(G) is cyclic, then show that G is abelian.

Or

State and prove Lagrange's theorem.

10

(d) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Show

that
$$G/K \cong G/H/K/H$$
. 10

Or

Prove Cayley's theorem. 10