3 (Sem-3 /CBCS) MAT HC 1

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-3016

(Theory of Real Functions)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 10 = 10$
 - (a) Find $\lim_{x\to 2} \frac{x^3-4}{x^2+1}$
 - (b) Is the function $f(x) = x \sin\left(\frac{1}{x}\right)$ continuous at x=0?
 - (c) Write the cluster points of A = (0,1).

Contd.

- (d) If a function $f: (a, \infty) \to \mathbb{R}$ is such that $\lim_{x \to \infty} x f(x) = L$, where $L \in \mathbb{R}$, then $\lim_{x \to \infty} f(x) = ?$
 - (e) Write the points of continuity of the function $f(x) = \cos \sqrt{1+x^2}$, $x \in \mathbb{R}$.
 - (f) "Every polynomial of odd degree with real coefficients has at least one real roof." Is this statement true or false?
 - (g) The derivative of an even function is function. (Fill in the blank)
 - (h) Between any two roots of the function $f(x) = \sin x$, there is at least root of the function $f(x) = \cos x$.

 (Fill in the blank)
 - (i) If $f(x) = |x^3|$ for $x \in \mathbb{R}$, then find f'(x) for $x \in \mathbb{R}$.
 - (j) Write the number of solutions of the equation ln(x) = x 2.

- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Show that $\lim_{x\to 0} (x+sgn(x))$ does not exist.
 - (b) Let f be defined for all $x \in \mathbb{R}$, $x \ne 3$ by $f(x) = \frac{x^2 + x 12}{x 3}$. Can f be defined at x = 3 in such a way that f is continuous at this point?
 - (c) Show that $f(x) = x^2$ is uniformly continuous on [0, a], where a > 0.
 - (d) Give an example with justification that a function is 'continuous at every point but whose derivative does not exist everywhere'.
 - (e) Suppose $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin \frac{1}{x^2}, \text{ for } x \neq 0 \text{ and}$ f(0) = 0. Is f' bounded on [-1,1]?

- If $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ has a limit at $c \in \mathbb{R}$, then prove that f is bounded on some neighbourhood of c.
 - (b) Let Fine Gettened for all the V, 2 a 3 by (b) Let $f(x) = |2x|^{-\frac{1}{2}}$ for $x \neq 0$. Show that $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x) = +\infty.$
 - argument states about the Show that the function f(x) = |x| is continuous at every point $c \in \mathbb{R}$.
- (d) Give an example to show that the product of two uniformly continuous function is not uniformly continuous nlog vion R. Berminoe's nettant a
 - (e) Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b]. If f' is positive on [a, b], then prove that f is strictly increasing on [a,b].
 - Evaluate —

$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$

- (a) Let $f: A \to \mathbb{R}$ and let c be a cluster point of A. Prove that the following are equivalent.
- (a) (i) Let I be I = I milval(i) and let I = I be continuous on I

4. Answer any four parts:

- (ii) For every sequence (x_n) in A that converges to c such that $x_n \neq c$ for all $x \in \mathbb{N}$, the sequence $(f(x_n))$ converges to 1. $f(x) = \frac{1}{1 + 2}$ for $x \in [0, 1]$ is uniformly
 - (b) (i) Give examples of functions f and g such that f and g do not have limits at a point c but such that both f+g and fg have limits at c.
- (ii) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and let c be a cluster point of A. If $\lim_{x\to C} f(x)$ exists and if |f| denotes the function defined for $x \in A$ by |f|(x) = |fx|, Proof that

$$\lim_{x \to c} |f|(x) = \left| \lim_{x \to c} f(x) \right|$$

(c) Prove that the rational functions and the sine functions are continuous on \mathbb{R} .

Jasisvillos

- (d) (i) Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I.

 Prove that the set f(I) is an interval.
- (ii) Show that the function $f(x) = \frac{1}{1+x^2} \text{ for } x \in \mathbb{R} \text{ is uniformly continuous on } \mathbb{R}.$
 - (e) State and prove maximum-minimum theorem. 2+8=10

in its at a point c but such that

(f) (i) If $f: I \to \mathbb{R}$ has derivative at $c \in I$, then prove that f is continuous at c. Is the converse true? Justify.

(ii) If r is a rational number, let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{for } x \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

Determine those values of r for which f'(0) exists.

- (g) State and prove Mean value theorem.

 Give the geometrical interpretation of the theorem. (2+5)+3=10
- (h) State and prove Taylor's theorem.