3 (Sem-3/CBCS) PHY HC 1

2021

(Held in 2022)

PHYSICS

(Honours)

Paper: PHY-HC-3016

(Mathematical Physics-II)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: (each question carries **one** mark) 1×7=7
 - (a) Show that $P_n(-x) = (-1)^n P_n(x)$.
 - (b) $L_1(x)-L_0(x)=?$

Express the one-dimensional heat flow equation.

(d)
$$\int_{0}^{\infty} e^{-x} x^{2n-1} dx = ?$$

(e)
$$\beta\left(\frac{1}{2}, \frac{1}{2}\right) = ?$$

- Square matrix = Symmetric matrix +?
- (a) If, $\mu^{-1}M\mu = M'$, then show that The figures in the mr. Tr.M'.
- Answer the following questions: (each question carries 2 marks) 2×4=8

full marks for the questions.

(a) Show that x = 0 is a regular singular print for the following differential equation:

$$2x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + (x^{2} - 4)y = 0$$

(b) Can we express the one-dimensional Schrödinger's equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial t^2}+V\psi(x,t)=i\hbar\frac{\partial\psi}{\partial t}(x,t)$$

in terms of space dependent and time independent equations if V is a function of both x and t? Explain.

- (c) Show that $\beta(l, m) = \beta(m, l)$.
- (d) Show that the matrix

(c) How many reconnections
$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
 are required

is Hermitian as well as unitary.

- 3. Answer any three questions from the following: (each question carries 5 marks) 51=5×6 (imension 2 × 2 carries only the real
 - (a) By the separation of variable method, solve the t-dependent part of the following equation:

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 mort dang

(b) If
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 transforms to $\begin{pmatrix} x' \\ y' \end{pmatrix}$ in the

 $-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial t^2} + V\psi(x,t) = i\hbar \frac{\partial \psi}{\partial t}(x,t)$ in terms of space dependent and time

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ then}$$

show that $x'^2 + y'^2 = x^2 + y^2$.

Verify that the transformation matrix is orthogonal. 2+3=5

- (c) How many real numbers are required to express a general complex matrix of dimension 2 × 2? Show that a 2 × 2 Hermitian matrix of dimension 2 × 2 carries four real numbers. Also, show that a skew-Hermitian matrix of dimension 2 × 2 carries only the real numbers.

 1+2+2=5
- (d) Find the Fourier's series representing f(x) = x, $0 < x < 2\pi$, and sketch its graph from $x = -4\pi$ to $x = +4\pi$.

3+2=5

5. Solve the equation that works (a)

$$L'_{n}(x)-n L'_{n-1}(x)+n L_{n-1}(x)=0.$$
 5

 $0 = \frac{w_0}{16} \text{ bns } 0 = (0 = 1) \text{ which nevig}$ $4.1 \text{ If, } y = \sum_{k=0}^{\infty} a_k x^{m+k} \text{ happens to be the power}$

series solution of the equation,

$$2x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + 3y = 0, \text{ then show}$$

that
$$a_{k+1} = \frac{-2m-2k+3}{2m+2k+1}$$
 (x) $x = (0, x)y = 10$

Or

Show the following:

(1)
$$(n+1)P_{n+1} = (2n+1)xP_n - nP_{n-1}$$

(2)
$$nP_n = xP'_n - P'_{n-1}$$

(3)
$$P'_{n+1} - P'_{n-1} = (2n+1)P_n$$

4+6=10

$$\frac{\partial^2 \psi}{\partial x \partial t} = e^{-t} \cos x$$

given that,
$$\psi(t=0) = 0$$
 and $\frac{\partial \psi}{\partial t}\Big|_{x=0} = 0$

κ=

series solution of '70 equation,

Consider a vibrating string of length *l* fixed at both ends, given that

$$y(0, t) = 0, y(l, t) = 0$$

$$y(x, 0) = f(x), \frac{\partial y}{\partial t}(x, 0) = 0; 0 < x < l$$

Solve completely the equation of vibrating string

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}.$$

6. If $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$, obtain A^{-1} .

From the matrix equation

$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 3 & -1 \end{pmatrix},$$
obtain, a, b, c, d .
$$4+6=10$$

Or

Obtain the eigenvalues and eigenvectors of the matrix

$$M = \begin{pmatrix} 2 & -i \\ i & 2 \end{pmatrix}$$

and hence diagonalize the same. 4+6=10